留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

约束阻尼悬臂梁瞬态响应近似解析解与实验分析

胡明勇 王安稳 章向明

胡明勇, 王安稳, 章向明. 约束阻尼悬臂梁瞬态响应近似解析解与实验分析[J]. 应用数学和力学, 2010, 31(11): 1287-1296. doi: 10.3879/j.issn.1000-0887.2010.11.003
引用本文: 胡明勇, 王安稳, 章向明. 约束阻尼悬臂梁瞬态响应近似解析解与实验分析[J]. 应用数学和力学, 2010, 31(11): 1287-1296. doi: 10.3879/j.issn.1000-0887.2010.11.003
HU Ming-yong, WANG An-wen, ZHANG Xiang-ming. Approximate Analytical Solutions and Experimental Analysis of Transient Response of Constrained Damping Cantilever Beam[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1287-1296. doi: 10.3879/j.issn.1000-0887.2010.11.003
Citation: HU Ming-yong, WANG An-wen, ZHANG Xiang-ming. Approximate Analytical Solutions and Experimental Analysis of Transient Response of Constrained Damping Cantilever Beam[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1287-1296. doi: 10.3879/j.issn.1000-0887.2010.11.003

约束阻尼悬臂梁瞬态响应近似解析解与实验分析

doi: 10.3879/j.issn.1000-0887.2010.11.003
基金项目: 国家自然科学基金资助项目(10572150);海军工程大学自然科学基金项目(HGDQNJJ008)的资助
详细信息
    作者简介:

    胡明勇(1977- ),男,江西吉安人,讲师,博士(联系人.E-mail:shuai_humingyong@163.com).

  • 中图分类号: O327

Approximate Analytical Solutions and Experimental Analysis of Transient Response of Constrained Damping Cantilever Beam

  • 摘要: 利用弹性悬臂梁模态叠加构造出约束阻尼悬臂梁的振动模态,基于Lagrange方程推导出了约束阻尼悬臂梁的控制方程,求解了在集中力突然卸载的情况下约束阻尼悬臂梁的动力响应.计算并测试了一系列铝合金约束阻尼悬臂梁模型的振动频率和瞬态响应,分析了阻尼层材料参数对铝合金约束悬臂梁瞬态响应时间的影响.采用了解析法以及实验法两种方法,结果表明,所采用的方法是可靠的.
  • [1] Nashif A, Jones D, Henderson J.Vibration Damping[M].New York:John Wiley & Sons, 1985.
    [2] Mead D J.Passive Vibration Control[M].Chichester:John Wiley & Sons, 1998.
    [3] Jones D I G.Handbook of Viscoelastic Vibration Damping[M].Chichester:John Wiley & Sons, 2001.
    [4] Kerwin J E M.Damping of flexural waves by a constrained viscoelastic layer[J].Journal of the Acoustical Society of America, 1959, 31(7):952-962. doi: 10.1121/1.1907821
    [5] Mead D J, Markus S.The forced vibration of a three-layer damped sandwich beam with arbitrary boundary conditions[J].Journal of Sound and Vibration, 1969, 10(2):163-175. doi: 10.1016/0022-460X(69)90193-X
    [6] Yan M J, Dowell E H.Governing equations of vibrating constrained-layer damping sandwich plates and beams[J].Journal of Applied Mechanics, 1972, 94: 1041-1047.
    [7] Ravi S S A, Kundra T K, Nakra B C.Response reanalysis of damped beams using eigen-parameter perturbation[J].Journal of Sound and Vibration, 1995, 179: 399-412. doi: 10.1006/jsvi.1995.0026
    [8] Baber T T, Maddox R A, Orozco C E.Finite element model for harmonically excited viscoelastic sandwich beams[J].Computers and Structures, 1998, 66(1):105-113. doi: 10.1016/S0045-7949(97)00046-1
    [9] Zheng H, Cai C, Tan X M.Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams[J].Computers and Structures, 2004, 82(29/30):2493-2507. doi: 10.1016/j.compstruc.2004.07.002
  • 加载中
计量
  • 文章访问数:  2140
  • HTML全文浏览量:  183
  • PDF下载量:  928
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-10-11
  • 刊出日期:  2010-11-15

目录

    /

    返回文章
    返回