Approximate Analytical Solutions and Experimental Analysis of Transient Response of Constrained Damping Cantilever Beam
-
摘要: 利用弹性悬臂梁模态叠加构造出约束阻尼悬臂梁的振动模态,基于Lagrange方程推导出了约束阻尼悬臂梁的控制方程,求解了在集中力突然卸载的情况下约束阻尼悬臂梁的动力响应.计算并测试了一系列铝合金约束阻尼悬臂梁模型的振动频率和瞬态响应,分析了阻尼层材料参数对铝合金约束悬臂梁瞬态响应时间的影响.采用了解析法以及实验法两种方法,结果表明,所采用的方法是可靠的.
-
关键词:
- 约束阻尼 /
- 悬臂梁 /
- 瞬态响应 /
- Lagrange方程 /
- 模态叠加
Abstract: Vibration mode of constrained damping cantilever was built up according to elastic cantilever beam mode superposition.Then the control equation of constrained damping cantilever beam was derived by using Lagrange's equation.Dynamic response of the constrained damping cantilever beam was obtained according to the principle of virtual work,when the concentrated force was suddenly unloaded.Frequencies and transient response of a series of constrained damping cantilever beam were calculated and tested.The influence of parameters of the damping layer on the response time was analyzed.Resolution and experimental approach are considered.The results show that this method is reliable.-
Key words:
- constrained damping /
- cantilever beam /
- transient response /
- Lagrange’s equation /
- modes superposition
-
[1] Nashif A, Jones D, Henderson J.Vibration Damping[M].New York:John Wiley & Sons, 1985. [2] Mead D J.Passive Vibration Control[M].Chichester:John Wiley & Sons, 1998. [3] Jones D I G.Handbook of Viscoelastic Vibration Damping[M].Chichester:John Wiley & Sons, 2001. [4] Kerwin J E M.Damping of flexural waves by a constrained viscoelastic layer[J].Journal of the Acoustical Society of America, 1959, 31(7):952-962. doi: 10.1121/1.1907821 [5] Mead D J, Markus S.The forced vibration of a three-layer damped sandwich beam with arbitrary boundary conditions[J].Journal of Sound and Vibration, 1969, 10(2):163-175. doi: 10.1016/0022-460X(69)90193-X [6] Yan M J, Dowell E H.Governing equations of vibrating constrained-layer damping sandwich plates and beams[J].Journal of Applied Mechanics, 1972, 94: 1041-1047. [7] Ravi S S A, Kundra T K, Nakra B C.Response reanalysis of damped beams using eigen-parameter perturbation[J].Journal of Sound and Vibration, 1995, 179: 399-412. doi: 10.1006/jsvi.1995.0026 [8] Baber T T, Maddox R A, Orozco C E.Finite element model for harmonically excited viscoelastic sandwich beams[J].Computers and Structures, 1998, 66(1):105-113. doi: 10.1016/S0045-7949(97)00046-1 [9] Zheng H, Cai C, Tan X M.Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams[J].Computers and Structures, 2004, 82(29/30):2493-2507. doi: 10.1016/j.compstruc.2004.07.002
计量
- 文章访问数: 2140
- HTML全文浏览量: 183
- PDF下载量: 928
- 被引次数: 0