留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类耦合非线性Schrodinger方程的Painlevé性质、严格解及其在大气重力波中的应用

刘萍 李子良 楼森岳

刘萍, 李子良, 楼森岳. 一类耦合非线性Schrodinger方程的Painlevé性质、严格解及其在大气重力波中的应用[J]. 应用数学和力学, 2010, 31(11): 1308-1329. doi: 10.3879/j.issn.1000-0887.2010.11.005
引用本文: 刘萍, 李子良, 楼森岳. 一类耦合非线性Schrodinger方程的Painlevé性质、严格解及其在大气重力波中的应用[J]. 应用数学和力学, 2010, 31(11): 1308-1329. doi: 10.3879/j.issn.1000-0887.2010.11.005
LIU Ping, LI Zi-liang, LOU Sen-yue. A Class of Coupled Nonlinear Schrödinger Equation:Painlevé Property,Exact Solutions and Application to Atmospheric Gravity Waves[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1308-1329. doi: 10.3879/j.issn.1000-0887.2010.11.005
Citation: LIU Ping, LI Zi-liang, LOU Sen-yue. A Class of Coupled Nonlinear Schrödinger Equation:Painlevé Property,Exact Solutions and Application to Atmospheric Gravity Waves[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1308-1329. doi: 10.3879/j.issn.1000-0887.2010.11.005

一类耦合非线性Schrodinger方程的Painlevé性质、严格解及其在大气重力波中的应用

doi: 10.3879/j.issn.1000-0887.2010.11.005
基金项目: 广东省自然科学基金资助项目(10452840301004616);国家自然科学基金资助项目(10735030;40775069);电子科技大学中山学院博士启动基金项目(408YKQ09)资助
详细信息
    作者简介:

    刘萍(1980- ),女,湖北人,博士(联系人.E-mail:liuping49@126.com).

  • 中图分类号: P431

A Class of Coupled Nonlinear Schrödinger Equation:Painlevé Property,Exact Solutions and Application to Atmospheric Gravity Waves

  • 摘要: 讨论了大气科学里的一类耦合非线性Schrdinger方程的Painlevé可积性和严格解.并给出了这个耦合方程通过Painlevé性质检测的参数条件.应用椭圆余弦函数展开法,得到了这个耦合非线性Schrdinger方程的20个周期椭圆余弦波解.这些严格解被用应用于解释大气重力波的产生和传输机制.
  • [1] Huang F, Tang X Y, Lou S Y, Lu C H.Evolution of dipole-type blocking life cycle: analytical diagnoses and observations[J]. J Atmos Sci, 2007,64(1): 52-73. doi: 10.1175/JAS3819.1
    [2] Li Z L. Solitary wave and periodic wave solutions for the thermally forced gravity waves in atmosphere[J].J Phys A: Math Theor, 2008, 41(14): 145206. doi: 10.1088/1751-8113/41/14/145206
    [3] Li Z L. Application of higher-order KdV-mKdV model with higher-degree nonlinear terms to gravity waves in atmosphere[J].Chinese Physics B, 2009, 18(10):4074-4082. doi: 10.1088/1674-1056/18/10/003
    [4] Jacobi C, Gavrilov N M, Kurschner D. Gravity wave climatology and trends in the mesosphere/lower thermosphere region deduced from low-frequency drift measurements 1984-2003[J].J Atmos and Solar-Terrestrial Phys, 2006, 68(17): 1913-1923.
    [5] 李子良,傅刚, 郭敬天,端义宏, 张美根. 岛屿地形对极地低压和热带气旋发展的线性理论模型和观测资料分析[J]. 应用数学和力学, 2009, 30(10): 1189-1201.
    [6] Liu P, Gao X N. Symmetry analysis of nonlinear incompressible non-Hydrostatic boussinesq equations[J].Commun Theor Phys, 2010, 53(4):609-614.
    [7] 朱利华, 周伟灿, 邹兰军. 垂直切变流中非线性重力波及其相互作用[J]. 南京气象学院学报, 2004, 27(3):405-412.
    [8] Benney D J, Newell A C. The propagation of nonlinear wave envelopes[J].J Math and Phys, 1967, 46(2): 133-139.
    [9] Tan B K. Collision interactions of envelope Rossby solitons in a barotropic atmosphere[J].J Atmos Sci,1996, 53(11): 1604-1616. doi: 10.1175/1520-0469(1996)053<1604:CIOERS>2.0.CO;2
    [10] Tang X Y, Shukla P K. Solution of the one-dimensional spatially inhomogeneous cubic-quintic nonlinear Schrdinger equation with an external potential[J].Phys Rev A, 2007, 76(1): 013612. doi: 10.1103/PhysRevA.76.013612
    [11] Pulov V I. Solutions and laws of conservation for coupled nonlinear Schrdinger equations: Lie group analysis[J].Phys Rev E, 1998, 57(3): 3468-3477. doi: 10.1103/PhysRevE.57.3468
    [12] Tan B K, Ying D P. Propagation of envelope solitons in baroclinic atmosphere[J]. Advances in Atmospheric Sciences, 1995, 12(4): 439-448. doi: 10.1007/BF02657004
    [13] Mattea R T, Gordon E S. Evolution of solitary marginal disturbances in baroclinic frontal geostrophic dynamics with dissipation and time-varying background flow[J].Proc R Soc A, 2007, 463(7): 1749-1769.
    [14] Porubov A V, Parker D F. Some general periodic solutions to coupled nonlinear Schrdinger equations[J].Wave Motion, 1999, 29(2): 97-109.
    [15] Sahadevan R, Tamizhmani K M, Lakshmanan M. Painlevé analysis and integrability of coupled non-linear Schrdinger equations[J]. J Phys A, 1986, 19(10): 1783-1791.
    [16] Radhakrishan R, Sahadevan R, Lakshmanan M. Integrability and singularity structure of coupled nonlinear Schrdinger equations[J].Chaos, Solitons & Fractals, 1995, 5(12): 2315-2327.
    [17] Kanna T, Lakshmanan M. Exact soliton solutions of coupled nonlinear Schrdinger equations: shape-changing collisions, logic gates, and partially coherent solitons[J]. Phys Rev E, 2003, 67 (4): 046617.
    [18] Liu P, Lou S Y. Coupled nonlinear Schrdinger equation: symmetries and exact solutions[J].Commun Theor Phys, 2009, 51(1): 27-34.
    [19] Painlevé P. Sur les équations différentielles du premier ordre[J]. C R Acas Soc Paris, 1888, 107: 221-224.
    [20] Ablowitz M J, Ramani A, Segur H. A connection between nonlinear evolution equations and ordinary differential equations of P-type[J].J Math. Phys, 1980, 21(5): 1006-1015.
    [21] Weiss J, Tabor M, Carnevale G. The Painlevé property for partial differential equations[J]. J Math Phys, 1983, 24(3): 522-526. doi: 10.1063/1.525721
    [22] Jimbo, M, Kruskal M D, Miwa T. Painlevé test for self-dual Yang-Mills equation[J]. Phys Lett A, 1982, 92(2): 59-60. doi: 10.1016/0375-9601(82)90291-2
    [23] Conte R. Invariant Painlevé analysis of partial differential equations[J].Phys Lett A, 1989, 140(7/8): 383-390.
    [24] Lou S Y. Extended Painlevé expansion, nonstand truncation and special reductions of nonlinear evolution equations[J]. Z Naturforsch A, 1998, 53(5): 251-258.
    [25] Liu P, Lou S Y. Lie point symmetries and exact solutions of the coupled volterra system[J].Chin Phys Lett, 2010, 27(2): 020202. doi: 10.1088/0256-307X/27/2/020202
    [26] Liu P, Lou S Y. A(2+1)-dimensional displacement shallow water wave system[J].Chin Phys Lett, 2008, 25(9): 3311-3314.
    [27] 刘式适, 付遵涛, 刘式达, 赵强.求某些非线性偏微分方程特解的一个简洁方法[J]. 应用数学和力学, 2001, 22(3): 281-286.
    [28] 许习华,丁一汇. 中尺度大气运动中孤立重力波特征的研究[J]. 大气科学, 1991,15(4):58-68.
    [29] 寿绍文,励申申,姚秀萍. 中尺度气象学[M]. 北京:气象出版社, 2003.
  • 加载中
计量
  • 文章访问数:  1716
  • HTML全文浏览量:  203
  • PDF下载量:  747
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-09-30
  • 刊出日期:  2010-11-15

目录

    /

    返回文章
    返回