留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物磁粘弹性流体的流动:应用动脉电磁过热评估血液的流动,癌症治疗进程

J·C·密斯让 A·辛哈 G·C·斯特

J·C·密斯让, A·辛哈, G·C·斯特. 生物磁粘弹性流体的流动:应用动脉电磁过热评估血液的流动,癌症治疗进程[J]. 应用数学和力学, 2010, 31(11): 1330-1343. doi: 10.3879/j.issn.1000-0887.2010.11.006
引用本文: J·C·密斯让, A·辛哈, G·C·斯特. 生物磁粘弹性流体的流动:应用动脉电磁过热评估血液的流动,癌症治疗进程[J]. 应用数学和力学, 2010, 31(11): 1330-1343. doi: 10.3879/j.issn.1000-0887.2010.11.006
J. C. Misra, A. Sinha, G. C. Shit. Flow of a Biomagnetic Viscoelastic Fluid:Application to Estimation of Blood Flow in Arteries During Electromagnetic Hyperthermia,a Therapeutic Procedure for Cancer Treatment[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1330-1343. doi: 10.3879/j.issn.1000-0887.2010.11.006
Citation: J. C. Misra, A. Sinha, G. C. Shit. Flow of a Biomagnetic Viscoelastic Fluid:Application to Estimation of Blood Flow in Arteries During Electromagnetic Hyperthermia,a Therapeutic Procedure for Cancer Treatment[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1330-1343. doi: 10.3879/j.issn.1000-0887.2010.11.006

生物磁粘弹性流体的流动:应用动脉电磁过热评估血液的流动,癌症治疗进程

doi: 10.3879/j.issn.1000-0887.2010.11.006
详细信息
  • 中图分类号: O357;R73-36+1

Flow of a Biomagnetic Viscoelastic Fluid:Application to Estimation of Blood Flow in Arteries During Electromagnetic Hyperthermia,a Therapeutic Procedure for Cancer Treatment

  • 摘要: 利用生物磁流体动力学(BFD)原理,在生物磁流体经由遭受磁场作用的多孔介质时,研究其流动的基本理论.所研究流体的磁化强度随温度而变化.流体被认为是非Newton流体,其流动由二阶梯度流体方程所控制,并考虑了流体的粘弹性效应.假设管道壁是能够伸展的,管壁表面的速度与到坐标原点的纵向距离成正比.首先将问题简化为包括7个参数的、耦合的非线性微分方程组的求解.将血液看作生物磁流体,并用上述方法分析,目的是计算某些血液的流动参数,并配以适当的数值方法,导数用差分格式近似.计算结果用图形给出,从而在磁场作用下,得到过热状态中关系血液的、血流动力学流动的理论预测.结果清楚地表明,在电磁过热治疗进程期间,磁偶极子对动脉中血液流动特征的影响起着重大作用.该研究引起了临床医学的关注,其结果有益于癌症病人采用电磁过热的治疗.
  • [1] Nikiforov V N. Magnetic induction hyperthermia[J]. Russian Phys J, 2007, 50(9): 913-924. doi: 10.1007/s11182-007-0133-1
    [2] Jordan A, Wust P, Scholz R, Tesche B, Fahling H, Mitrovics T, Vogl T, Carvos-navarro J, Felix R. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro[J]. Int J Hyperthemia, 1996, 12(6) :705-722. doi: 10.3109/02656739609027678
    [3] Fiorentini G, Szasz S. Hyperthermia today: electric energy, a new opportunity in cancer treatment[J]. J Cancer Res Ther, 2006, 2(2): 41-46. doi: 10.4103/0973-1482.25848
    [4] Higashi T, Yamagishi A, Takeuchi T, Kawaguchi N, Sagawa S, Onishi S, Date M. Orientation of erythrocytes in a strong static magnetic field[J]. J Blood, 1993, 82 (4): 1328-1334.
    [5] Gasparovic C, Matweiyoff N A. The magnetic properties and water dynamics of the red blood cell[J]. Magn Reson Med, 1992, 26(2): 274-299. doi: 10.1002/mrm.1910260208
    [6] Higashi T, Ashida N, Takeuchi T. Orientation of blood cells in static magnetic field[J]. Physica B, 1997, 237/238: 616-620. doi: 10.1016/S0921-4526(97)00276-7
    [7] Pauling L, Coryell C D. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxy hemoglobin[J]. Proc Natl Acad Sci(USA), 1936, 22: 210-216. doi: 10.1073/pnas.22.4.210
    [8] Motta M, Haik Y, Gandhari A, Chen C J. High magnetic field effects on human deoxygenated hemoglobin light absorption[J]. Bioelectrochem Bioengerg, 1998, 47(2) :297-300. doi: 10.1016/S0302-4598(98)00165-2
    [9] Bartoszek M, Drzazge Z. A study of magnetic anisotropy of blood cells[J]. J Magn Magn Mater, 1999,196/197(1): 573-575. doi: 10.1016/S0304-8853(98)00838-5
    [10] Haik Y, Pai V, Chen C J. Development of magnetic device for cell separation[J]. J Magn Magn Mater, 1999, 194 (1/3) :254-261. doi: 10.1016/S0304-8853(98)00559-9
    [11] Voltairas P A, Fotiadis D I, Michalis L K. Hydrodynamics of magnetic drug targeting[J]. J Biomech, 2002, 35: 813-821. doi: 10.1016/S0021-9290(02)00034-9
    [12] Ruuge E K, Rusetski A N. Magnetic fluids as drug carriers: Targeted transport of drugs by a magnetic field[J]. J Magn Magn Mater, 1993, 122(1/3): 335-339. doi: 10.1016/0304-8853(93)91104-F
    [13] Badescou V, Rotariu O, Murariu V, Rezlescu N. Transverse high gradient magnetic filter cell with bounded flow field[J]. IEEE Trans Magn, 1997, 33(6) :4439-4444. doi: 10.1109/20.649878
    [14] Andra W, Nowak H. Magnetism in Medicine[M]. Berlin :Wiley VCH, 1998.
    [15] Plavins J, Lauva M. Study of colloidal magnetite binding erythrocytes: prospects for cell separation[J]. J Magn Magn Mater, 1993, 122 (1/3): 349-353. doi: 10.1016/0304-8853(93)91107-I
    [16] Berkovski B, Bashtovoy V. Magnetic Fluids and Applications Handbook[M].New York: Begell House Inc, 1996.
    [17] Blums E, Cebers A, Maiorov M M. Magnetic Fluids[M]. Berlin: Walter de Gruyter, 1997.
    [18] Neuringer J L, Rosensweig R E. Ferrohydrodynamics[J]. Physics of Fluids, 1964,7: 1927-1937. doi: 10.1063/1.1711103
    [19] Rosensweig R E. Ferrohydrodynamics [M]. Cambridge: Cambridge University Press, 1985.
    [20] Rosensweig R E. Magnetic fluids[J]. Annual Review of Fluid Mechanics, 1987, 19: 437-463. doi: 10.1146/annurev.fl.19.010187.002253
    [21] Haik Y, Pai V M,Chen C J. Biomagnetic fluid dynamics[C]Shyy W, Narayanan R. Fluid Dynamics at Interfaces. Cambridge: Cambridge University Press,1999: 439-452.
    [22] Tzirtzilakis E E, Kafoussias N G. Biomagnetic fluid flow over a stretching sheet with non-linear temperature dependent magnetization[J]. J Appl Math Phys, ZAMP, 2003, 54: 551-565. doi: 10.1007/s00033-003-1100-5
    [23] Tzirtzilakis E E, Xenos M, Loukopoulos V C, Kofoussias N G. Turbulent biomagnetic fluid flow in a rectangular channel under the action of a localized magnetic field[J]. Int J Engg Sci, 2006, 44(18/19):1205-1224. doi: 10.1016/j.ijengsci.2006.07.005
    [24] Andersson H I, Valnes O A. Flow of a heated ferrofluid over a stretching sheet in the presence of magnetic dipole[J]. Acta Mech, 1998, 128(1/2): 39-47. doi: 10.1007/BF01463158
    [25] Fukada E, Kaibara M. Viscoelastic study of aggregation of red blood cells[J].Biorheology, 1980, 17(1/2): 177-182.
    [26] Thurston G B. Viscoelasticity of human blood[J]. Biophysical J, 1972, 12(9): 1205-1217. doi: 10.1016/S0006-3495(72)86156-3
    [27] Stoltz J F, Lucius M. Viscoelasticity and thixotropy of human blood[J]. Biorheology, 1981, 18 (3/6): 453-473.
    [28] Misra J C, Shit G C. Biomagnetic viscoelastic fluid flow over a stretching sheet[J]. Appl Math Comput, 2009, 210 (2): 350-361. doi: 10.1016/j.amc.2008.12.088
    [29] Misra J C, Shit G C. Flow of a biomagnetic visco-elastic fluid in a channel with stretching walls[J]. Trans ASME J Appl Mech, 2009, 76 (6): 061006-1. doi: 10.1115/1.3130448
    [30] Misra J C, Shit G C, Rath H J. Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: some applications to hemodynamics[J]. Computers and Fluids, 2008, 37: 1-11. doi: 10.1016/j.compfluid.2006.09.005
    [31] Misra J C, Pal B, Gupta A S. Hydromagnetic flow of second-grade fluid in a channel: some applications to physiological systems[J]. Math Model and Methods in Appl Sci, 1998, 8(8):1323-1342. doi: 10.1142/S0218202598000627
    [32] Pal B, Misra J C, Pal A, Gupta A S. Hydromagnetic flow of a viscoelastic fluid in a parallel plate channel with stretching walls[J]. Ind J Maths, 1999, 41: 231-247.
    [33] Dunn J E, Fosdick R L. Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade[J]. Arch Rational Mech Anal, 1974,56(3): 119-252.
    [34] Fosdick R L, Rajagopal K R. Anomalous features in the model of “second order fluids”[J]. Arch Rational Mech Anal, 1978, 70(2):145-152.
    [35] Schakenraad J M, Lam K G. The influence of porosity and surface roughness on biocompatibility[C] Zilla P. Tissue Eng Vascular Prosthetic Grafts. Austin: Landes Bioscience, 1999.
    [36] Siddinqui A M, Schwarz W H. Peristaltic flow of a second order fluid in tubes[J]. J Non-Newtonian Fluid Mech, 1994, 53: 257-284. doi: 10.1016/0377-0257(94)85052-6
    [37] Varshney C L. The fluctuating flow of a viscous fluid through a porous medium bounded by a porous and horizontal surface[J]. Indian J Pure Appl Math, 1979, 10: 1558-1564.
    [38] Raptis A, Perdikis C. Flow of a viscous fluid through a porous medium bounded by a vertical surface[J]. Int J Eng Sci, 1983, 21(11): 1327-1330. doi: 10.1016/0020-7225(83)90130-1
    [39] Hayat T, Qureshi M U, Hussain Q. Effect of heat transfer on the peristaltic flow of an electrically conducting fluid in a porous space[J]. Appl Math Modelling, 2009, 33(4): 1862-1873. doi: 10.1016/j.apm.2008.03.024
    [40] Sacheti N C. Application of Brinkman model in viscous incompressible flow through a porous channel[J]. J Math Phys Sci, 1983, 17: 567-577.
    [41] Tzirtzilakis E E, Tanoudis G B. Numerical study of biomagnetic fluid flow over a stretching sheet with heat transfer[J]. Int J Numer Methods Heat Fluid Flow, 2003, 13(7): 830-848. doi: 10.1108/09615530310502055
  • 加载中
计量
  • 文章访问数:  1763
  • HTML全文浏览量:  110
  • PDF下载量:  1066
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-09-21
  • 刊出日期:  2010-11-15

目录

    /

    返回文章
    返回