留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可渗透收缩薄膜引起的三维不稳定边界层流动

N·巴佐 A·伊萨克 I·波普

N·巴佐, A·伊萨克, I·波普. 可渗透收缩薄膜引起的三维不稳定边界层流动[J]. 应用数学和力学, 2010, 31(11): 1344-1350. doi: 10.3879/j.issn.1000-0887.2010.11.007
引用本文: N·巴佐, A·伊萨克, I·波普. 可渗透收缩薄膜引起的三维不稳定边界层流动[J]. 应用数学和力学, 2010, 31(11): 1344-1350. doi: 10.3879/j.issn.1000-0887.2010.11.007
Norfifah Bachok, Anuar Ishak, Ioan Pop. Unsteady Three-Dimensional Boundary Layer Flow Due to a Permeable Shrinking Sheet[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1344-1350. doi: 10.3879/j.issn.1000-0887.2010.11.007
Citation: Norfifah Bachok, Anuar Ishak, Ioan Pop. Unsteady Three-Dimensional Boundary Layer Flow Due to a Permeable Shrinking Sheet[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1344-1350. doi: 10.3879/j.issn.1000-0887.2010.11.007

可渗透收缩薄膜引起的三维不稳定边界层流动

doi: 10.3879/j.issn.1000-0887.2010.11.007
基金项目: 马来西亚科学部技术与创新项目资助(06-01-02-SF0610)
详细信息
  • 中图分类号: O357.4;O345

Unsteady Three-Dimensional Boundary Layer Flow Due to a Permeable Shrinking Sheet

  • 摘要: 研究可渗透收缩薄膜上的不稳定粘性流动.通过相似变换得到相似方程.在不同的不稳定参数、质量吸入参数、收缩参数、Prandtl数下,数值地求解相似方程,得到速度和温度的分布,以及表面摩擦因数和Nusselt数等.结果发现,与不稳定的伸展薄膜不同,在质量吸入参数和不稳定参数的某一范围内,可渗透收缩薄膜上的不稳定流动存在双重解.
  • [1] Lin C R, Chen C K. Exact solution of heat transfer from a stretching surface with variable heat flux[J].Heat Mass Transfer, 1998,33(5/6):477-480. doi: 10.1007/s002310050218
    [2] Abraham J P, Sparrow E M. Friction drag resulting from the simultaneous imposed motions of a freestream and its bounding surface[J].Int J Heat Fluid Flow, 2005, 26(2):289-295. doi: 10.1016/j.ijheatfluidflow.2004.08.007
    [3] Crane L J. Flow past a stretching plate[J].Z Angew Math Phys, 1970,21(4):645-647. doi: 10.1007/BF01587695
    [4] Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction and blowing[J].Can J Chem Eng, 1977, 55(6):744-746. doi: 10.1002/cjce.5450550619
    [5] Chakrabarti A C, Gupta A S. Hydromagnetic flow and heat transfer over a stretching sheet[J].Q Appl Math, 1979,37: 73-78 .
    [6] Kuiken H K. On boundary layers in fluid mechanics that decay algebraically along stretches of wall that are not vanishingly small[J].IMA J Appl Math, 1981,27(4):387-405. doi: 10.1093/imamat/27.4.387
    [7] Carragher P, Crane L J. Heat transfer on a continuous stretching sheet[J].Z Angew Math Mech, 1982, 62(10):564-565. doi: 10.1002/zamm.19820621009
    [8] Banks W H H. Similarity solutions of the boundary layer equations for a stretching wall[J]. J Mech Theor Appl, 1983, 2(3):375-392.
    [9] Magyari E, Keller B. Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls[J].Eur J Mech B-Fluids, 2000, 19(1):109-122. doi: 10.1016/S0997-7546(00)00104-7
    [10] 朱婧, 郑连存, 张志刚. 幂律速度运动表面上磁流体在驻点附近的滑移流动[J]. 应用数学和力学, 2010, 31(4):411-419.
    [11] Wang C Y. The three-dimensional flow due to a stretching flat surface[J].Phys Fluids, 1984, 27(8):1915-1917. doi: 10.1063/1.864868
    [12] Surma Devi C D, Takhar H S, Nath G. Unsteady three-dimensional boundary-layer due to a stretching surface[J]. Int J Heat Mass Transfer, 1986, 29(12):1996-1999. doi: 10.1016/0017-9310(86)90020-7
    [13] Miklavcˇicˇ M, Wang C Y. Viscous flow due to a shrinking sheet[J].Quart Appl Math, 2006, 64(4):283-290.
    [14] Wang C Y. Stagnation flow towards a shrinking sheet[J].Int J Non-Linear Mech, 2008, 43(5):377-382. doi: 10.1016/j.ijnonlinmec.2007.12.021
    [15] Fang T. Boundary layer flow over a shrinking sheet with power-law velocity[J].Int J Heat Mass Transfer, 2008, 51(25/26):5838-5843. doi: 10.1016/j.ijheatmasstransfer.2008.04.067
    [16] Fang T, Liang W, Lee C F. A new solution branch for the Blasius equation a shrinking sheet problem[J].Comput Math Appl, 2008, 56(12):3088-3095. doi: 10.1016/j.camwa.2008.07.027
    [17] Fang T, Zhang J, Yao S S. Viscous flow over an unsteady shrinking sheet with mass transfer[J].Chin Phys Lett, 2009, 26(1):014703. doi: 10.1088/0256-307X/26/1/014703
    [18] Hayat T, Abbas Z, Sajid M. On the analytic solution of magnetohydrodynamic flow of a second grade fluid over a shrinking sheet[J]. J Appl Mech-Trans ASME, 2007, 74(6):1165-1171. doi: 10.1115/1.2723820
    [19] Sajid M, Hayat T, Javed T. MHD rotating flow of a viscous fluid over a shrinking surface[J].Nonlinear Dyn, 2008, 51(1/2):259-265.
    [20] Fang T, Zhang J. Thermal boundary layers over a shrinking sheet: an analytical solution[J].Acta Mechanica, 2010, 209(3/4):325-343. doi: 10.1007/s00707-009-0183-2
    [21] Cebeci T, Bradshaw P. Physical and Computational Aspects of Convective Heat Transfer[M]. New York: Springer, 1988.
    [22] Bachok N, Ishak A, Pop I. Mixed convection boundary layer flow near the stagnation point on a vertical surface embedded in a porous medium with anisotropy effect[J].Transp Porous Med, 2010,82(2):363-373. doi: 10.1007/s11242-009-9431-0
    [23] Bachok N, Ishak A, Pop I. Boundary-layer flow of nanofluids over a moving surface in a flowing fluid[J].Int J Thermal Sci, 2010, 49(9):1663-1668. doi: 10.1016/j.ijthermalsci.2010.01.026
    [24] Ishak A, Nazar R, Pop I. Boundary-layer flow of a micropolar fluid on a continuous moving or fixed surface[J].Can J Phys, 2006, 84(5):399-410. doi: 10.1139/p06-059
    [25] Ishak A, Nazar R, Pop I. MHD boundary-layer flow due to a moving extensible surface[J].J Eng Math, 2008, 62(1):23-33. doi: 10.1007/s10665-007-9169-z
  • 加载中
计量
  • 文章访问数:  1697
  • HTML全文浏览量:  165
  • PDF下载量:  821
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-09-08
  • 刊出日期:  2010-11-15

目录

    /

    返回文章
    返回