Regularity and Finite Dimensionality of Attractor for Plate Equation on Rn
-
摘要: 研究了无界区域Rn上Plate方程全局吸引子的正则性和有限分形维性.该方程的全局吸引子在相空间H2(Rn)×L2(Rn)的存在性已在先期文章建立,现在进一步证明该全局吸引子具有更好的正则性,即它是H4(Rn)×H2(Rn)的有界集并具有有限分形维数.Abstract: Regularity and finite dimensionality of global attractor for plate equation on unbounded domain Rn were studied. Existence of the attractor inphase space H2(Rn)×L2 (Rn) was established in the author's earlier paper. It is showed that the attractor is actually a bounded set of H4 (Rn)×H2(Rn) and has finite fractal dimensionality.
-
Key words:
- global attractor /
- Plate equation /
- regularity /
- finite dimensionality /
- unbounded domain
-
[1] Khanmamedov A K. Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain[J].J Diff Equs, 2006, 225(2):528-548. doi: 10.1016/j.jde.2005.12.001 [2] Xiao H B. Asymptotic dynamics of Plate equations with critical exponent on unbounded domain[J].Nonlinear Anal, 2009, 70(3): 1288-1301. doi: 10.1016/j.na.2008.02.012 [3] Babin A V, Vishik M I. Attractors of Evolution Equations[M]. Amsterdam: North-Holland, 1992. [4] Chueshov I, Lasiecka I. Long-time behavior of second order evolution equations with nonlinear damping[J]. Mem Am Math Soc, 2008, 195(912): 22-27. [5] Hale J K. Asymptotic Behavior of Dissipative Systems[M].Vidence, RI: Amer Math Soc, 1988. [6] Sell G R, You Y C. Dynamics of Evolution Equations[M]. New York: Springer-Verlag, 2002. [7] Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics[M]. Berlin: Springer-Verlag,1997. [8] Miranville A, Zelik S. Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domain[M]. Amsterdam: Elsevier, 2008. [9] Rausel G. Global Attractors in Partial Differential Equations[M].Amsterdam: North-Holland, 2002. [10] Cazenave T, Haraux A. An Introduction to Semilinear Evolution Equations[M].Oxford: Clarendon Press, 1998.
计量
- 文章访问数: 1887
- HTML全文浏览量: 119
- PDF下载量: 735
- 被引次数: 0