留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面弹性方程的非协调有限元分析

杨永琴 肖留超 陈绍春

杨永琴, 肖留超, 陈绍春. 平面弹性方程的非协调有限元分析[J]. 应用数学和力学, 2010, 31(12): 1454-1464. doi: 10.3879/j.issn.1000-0887.2010.12.006
引用本文: 杨永琴, 肖留超, 陈绍春. 平面弹性方程的非协调有限元分析[J]. 应用数学和力学, 2010, 31(12): 1454-1464. doi: 10.3879/j.issn.1000-0887.2010.12.006
YANG Yong-qin, XIAO Liu-chao, CHEN Shao-chun. Nonconforming Finite Elements for the Equation of Planar Elasticity[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1454-1464. doi: 10.3879/j.issn.1000-0887.2010.12.006
Citation: YANG Yong-qin, XIAO Liu-chao, CHEN Shao-chun. Nonconforming Finite Elements for the Equation of Planar Elasticity[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1454-1464. doi: 10.3879/j.issn.1000-0887.2010.12.006

平面弹性方程的非协调有限元分析

doi: 10.3879/j.issn.1000-0887.2010.12.006
基金项目: 国家自然科学基金资助项目(10771198;11071226);河南省国际科技合作项目
详细信息
    作者简介:

    杨永琴(1978- ),女,河南焦作人,讲师,博士(联系人.E-mail:yangyongqin@zzu.edu.cn).

  • 中图分类号: O242.21

Nonconforming Finite Elements for the Equation of Planar Elasticity

  • 摘要: 针对纯位移平面弹性问题,构造了两个无闭锁非协调有限元,单元对于Lamé常数λ一致收敛,证明了能量模和L2模误差分别为O(h2)和O(h3).最后给出了数值试验验证了理论分析的正确性.
  • [1] Arnold D N, Douglas J, Gupta C P. A family of higher order mixed finite element methods for plane elasticity[J].Numer Math,1984, 45(1): 1-22. doi: 10.1007/BF01379659
    [2] Arnold D N, Falk R S. A new mixed formulation for elasticity[J].Numer Math, 1988, 53(1/2): 13-30. doi: 10.1007/BF01395876
    [3] Babuska I, Suri M. Locking effects in the finite element approximation of elasticity problems[J].Numer Math, 1992, 62(1): 439-463. doi: 10.1007/BF01396238
    [4] Scott L R, Vogelius M. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials[J].Math Model Numer Anal, 1985, 19(1): 113-143.
    [5] Vogelius M. An analysis of the p-version of the finite element method for nearly incompressible materials,uniformly valid, optimal order estimates[J].Numer Math, 1983, 41(1): 39-53. doi: 10.1007/BF01396304
    [6] Stenberg R, Suri M. Mixed hp finite element methods for problems in elasticity and Stokes flow[J].Numer Math, 1996, 72(3): 367-389. doi: 10.1007/s002110050174
    [7] Stenberg R. A family of mixed finite elements for the elasticity problem[J].Numer Math, 1988, 53(5): 513-538. doi: 10.1007/BF01397550
    [8] Morley M. A mixed family of elements for linear elasticity[J].Math Comp, 1977, 55: 633-666.
    [9] Zhang Z. Analysis of some quadrilateral nonconforming elements for incompressible elasticity[J].SIAM J Numer Anal, 1997, 34(2): 640-663. doi: 10.1137/S0036142995282492
    [10] Brenner S C, Sung L Y. Linear finite element methods for planar linear elasticity[J].Math Comp, 1992, 59(220): 321-330. doi: 10.1090/S0025-5718-1992-1140646-2
    [11] Brenner S C, Scott L R.The Mathematical Theory of Finite Element Methods[M]. New York: Springer-Verlag, 1994.
    [12] Falk R S. Noncomforming finite element methods for the equations of linear elasticity[J].Math Comp, 1991, 51(196): 529-550.
    [13] Capatina D, Thomas J M. Nonconforming finite element methods without numerical locking[J].Numer Math, 1998, 81(2): 163-186. doi: 10.1007/s002110050388
    [14] Crouzeix M, Raviart P A. Conforming and nonconforming finite element methods for solving stationary Stokes equations[J].RAIRO Anal Numer, 1973, 7(R-3): 33-76.
    [15] 王烈衡,齐禾. 关于平面弹性问题Locking-free有限元格式[J]. 计算数学, 2002, 24(2): 243-256.
    [16] 明平兵. 非协调元vs Locking问题[D]. 北京: 中国科学院计算数学所, 1999.
    [17] Ciarlet P G.The Finite Element Method for Elliptic Problems[M]. New York: North-Holland, 1978.
    [18] YANG Yong-qin, CHEN Shao-chun. A locking-free nonconforming triangular element for planar elasticity with pure traction boundary condition[J].Journal of Computational and Applied Mathematics, 2010, 233(10): 2703-2710. doi: 10.1016/j.cam.2009.11.019
  • 加载中
计量
  • 文章访问数:  1823
  • HTML全文浏览量:  172
  • PDF下载量:  970
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-09-26
  • 刊出日期:  2010-12-15

目录

    /

    返回文章
    返回