留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个广义扰动Klein-Gordon方程孤子解

莫嘉琪

莫嘉琪. 一个广义扰动Klein-Gordon方程孤子解[J]. 应用数学和力学, 2010, 31(12): 1489-1495. doi: 10.3879/j.issn.1000-0887.2010.12.009
引用本文: 莫嘉琪. 一个广义扰动Klein-Gordon方程孤子解[J]. 应用数学和力学, 2010, 31(12): 1489-1495. doi: 10.3879/j.issn.1000-0887.2010.12.009
MO Jia-qi. Soliton Solution to Nonlinear Generalized Disturbed Klein-Gordon Equation[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1489-1495. doi: 10.3879/j.issn.1000-0887.2010.12.009
Citation: MO Jia-qi. Soliton Solution to Nonlinear Generalized Disturbed Klein-Gordon Equation[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1489-1495. doi: 10.3879/j.issn.1000-0887.2010.12.009

一个广义扰动Klein-Gordon方程孤子解

doi: 10.3879/j.issn.1000-0887.2010.12.009
基金项目: 国家自然科学基金资助项目(40876010);中国科学院知识创新工程重要方向资助项目(KZCX2-YW-Q03-08);公益性行业(气象)科研专项基金资助项目(GYHY200806010);LASG国家重点实验室专项经费资助项目;上海市教育委员会E-研究院建设计划资助项目(E03004)
详细信息
    作者简介:

    莫嘉琪(1937- ),男,浙江德清人,教授(Tel:+86-553-3869642;E-mail:mojiaq@imai.lahnu.edu.cn).

  • 中图分类号: O175.29

Soliton Solution to Nonlinear Generalized Disturbed Klein-Gordon Equation

  • 摘要: 研究了一个广义非线性扰动Klein-Gordon方程.利用同伦映射方法,首先构造了相应的同伦映射;然后选取了适当的初始近似;并计算各阶相应孤子近似解.同时还考虑了一个微扰方程.
  • [1] 马松华, 强继业, 方建平. 2+1维Boiti-Leon-Pempinelli系统的混沌行为及孤子间的相互作用[J]. 物理学报, 2007, 56(2): 620-626.
    [2] MA Song-hua, QIANG Ji-ye, FANG Jian-ping. Annihilation solitons and chaotic solitons for the (2+1)-dimensional breaking soliton system[J]. Commun Theor Phys, 2007, 48(4): 662-666. doi: 10.1088/0253-6102/48/4/019
    [3] Loutsenko I. The variable coefficient Hele-Shaw problem, integrability and quadrature identities[J]. Comm Math Phys, 2006, 268(2): 465-479. doi: 10.1007/s00220-006-0099-9
    [4] Gedalin M. Low-frequency nonlinear stationary waves and fast shocks: hydrodynamical description[J]. Phys Plasmas, 1998, 5(1): 127-132. doi: 10.1063/1.872681
    [5] Parkes E J. Some periodic and solitary travelling-wave solutions of the short-pulse equation[J]. Chaos Solitons Fractals, 2008, 38(1): 154-159. doi: 10.1016/j.chaos.2006.10.055
    [6] 李向正, 李修勇, 赵丽英, 张金良. Gerdjikov-Ivanov方程的精确解[J]. 物理学报, 2008, 57(4): 2231-2234.
    [7] WANG Ming-liang. Solitary wave solutions for variant Boussinesq equations[J]. Phys Lett A,1995, 199(3/4): 169-172. doi: 10.1016/0375-9601(95)00092-H
    [8] Sirendaoreji, JIONG Sun. Auxiliary equation method for solving nonlinear partial differential equations[J]. Phys Lett A, 2003, 309(5): 387-396. doi: 10.1016/S0375-9601(03)00196-8
    [9] McPhaden M J, Zhang D. Slowdown of the meridional overturning circulation in the upper Pacific ocean[J]. Nature, 2002, 415(3): 603-608. doi: 10.1038/415603a
    [10] GU Dai-fang, Philander S G H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics[J]. Science, 1997, 275(7): 805-807. doi: 10.1126/science.275.5301.805
    [11] 潘留仙, 左伟明, 颜家壬. Landau-Ginzburg-Higgs方程的微扰理论[J]. 物理学报, 2005, 54(1): 1-5.
    [12] NI Wei-ming, WEI Jun-cheng. On positive solution concentrating on spheres for the Gierer-Meinhardt system[J]. J Differ Equations,2006, 221(1): 158-189. doi: 10.1016/j.jde.2005.03.004
    [13] Bartier Jean-Philippe. Global behavior of solutions of a reaction-diffusion equation with gradient absorption in unbounded domains[J]. Asymptotic Anal, 2006, 46(3/4): 325-347.
    [14] Libre J, da Silva P R, Teixeira M A. Regularization of discontinuous vector fields on R3 via singular perturbation[J]. J Dyn Differ Equations, 2007, 19(2): 309-331. doi: 10.1007/s10884-006-9057-7
    [15] Guarguaglini F R, Natalini R. Fast reaction limit and large time behavior of solutions to a nonlinear model of sulphation phenomena[J]. Commun Partial Differ Equations, 2007, 32(2): 163-189. doi: 10.1080/03605300500361438
    [16] MO Jia-qi. Approximate solution of homotopic mapping to solitary for generalized nonlinear KdV system[J]. Chin Phys Lett, 2009, 26(1): 010204. doi: 10.1088/0256-307X/26/1/010204
    [17] Liao S J. Beyond Perturbation: Introduction to the Homotopy Analysis Method[M]. New York: CRC Press Co, 2004.
    [18] Zheng X, Zhang H Q. Backlund transformation and exact solutions for (2+1)-dimensional Boussinesq equation[J].Acta Phys Sin, 2005, 54(3): 1476-1480.
    [19] MA Song-hua, FANG Jian-ping, ZHENG Chun-long. Complex wave exitations and chaotic patterns for a general (2+1)-dimensional Korteweg-de Vries system[J]. Chin Phys, 2008, 17(8):2767-2773. doi: 10.1088/1674-1056/17/8/004
    [20] Liu S K, Fu Z T, Liu S D, Zhao Q. Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations[J]. Acta Phys Sin, 2001, 50(11): 2068-2073.
    [21] de Jager E M, JIANG Fu-ru. The Theory of Singular Perturbation[M]. Amsterdam: North-Holland Publishing Co, 1996.
  • 加载中
计量
  • 文章访问数:  1538
  • HTML全文浏览量:  118
  • PDF下载量:  1018
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-10-30
  • 刊出日期:  2010-12-15

目录

    /

    返回文章
    返回