留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hamilton-Jacobi-Bellman方程的区域分解算法

陈光华 陈光明 戴智华

陈光华, 陈光明, 戴智华. Hamilton-Jacobi-Bellman方程的区域分解算法[J]. 应用数学和力学, 2010, 31(12): 1496-1502. doi: 10.3879/j.issn.1000-0887.2010.12.010
引用本文: 陈光华, 陈光明, 戴智华. Hamilton-Jacobi-Bellman方程的区域分解算法[J]. 应用数学和力学, 2010, 31(12): 1496-1502. doi: 10.3879/j.issn.1000-0887.2010.12.010
CHEN Guang-hua, CHEN Guang-ming, DAI Zhi-hua. Modified Domain Decomposition Method for Hamilton-Jacobi-Bellman Equations[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1496-1502. doi: 10.3879/j.issn.1000-0887.2010.12.010
Citation: CHEN Guang-hua, CHEN Guang-ming, DAI Zhi-hua. Modified Domain Decomposition Method for Hamilton-Jacobi-Bellman Equations[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1496-1502. doi: 10.3879/j.issn.1000-0887.2010.12.010

Hamilton-Jacobi-Bellman方程的区域分解算法

doi: 10.3879/j.issn.1000-0887.2010.12.010
详细信息
    作者简介:

    陈光华(1977- ),男,长沙人,博士生(联系人.E-mail:guanghuachen@sjtu.edu.cn).

  • 中图分类号: O175.29; O241.82

Modified Domain Decomposition Method for Hamilton-Jacobi-Bellman Equations

  • 摘要: 对离散Hamilton-Jacobi-Bellman方程提出了一类区域分解算法,并在合理的假设下证明了该算法的单调收敛性,数值结果表明该算法的有效性与准确性.
  • [1] Boulbrachene M, Haiour M. The finite element approximation of Hamilton-Jacobi-Bellman equations[J]. Comput Math Appl, 2001, 41(7/8): 993-1007. doi: 10.1016/S0898-1221(00)00334-5
    [2] Lions P L, Mercier B. Approximation numerique des equations de Hamilton-Jacobi-Bellman [J]. RAIRO Anal Numer, 1980, 14(4): 369-393.
    [3] Li W, S Wang. Penalty approach to the HJB equation arising in European stock option pricing with proportional transaction costs[J]. J Optim Theory Appl, 2005, 143(2): 279-293.
    [4] Lions P L. Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations Part 1[J]. Communications in Partial Differential Equations, 1983, 8(10): 1101-1174. doi: 10.1080/03605308308820297
    [5] Bardi M, Capuzzo-Dolcetta J. Optimal Control and Viscosity Solution of Hamilton-Jacobi-Bellman Equations[M]. Boston: Birkhuser, 1997.
    [6] ZHOU Shu-zi, ZHAN Wu-ping. A new domain decomposition method for an HJB equation[J]. Journal of Computational and Applied Mathematics, 2003, 159(1): 195-204. doi: 10.1016/S0377-0427(03)00554-5
    [7] Sun M. Domain decomposition algorithms for solving Hamilton-Jacobi-Bellman equations[J]. Numer Funct Anal Optim, 1993, 14(1/2): 145-166. doi: 10.1080/01630569308816513
    [8] Quarteroni A, Valli A. Domain Decomposition Methods for Partial Differential Equations[M]. New York: Oxford Science, 1999.
    [9] Smith B F, Bjrstad P E, Gropp W. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations[M]. New York: Cambridge University Press, 1996.
    [10] Toselli A, Widlund O. Domain Decomposition Methods-Algorithms and Theory[M]. Springer Series in Computational Mathematics, vol 34. Berlin: Springer, 2004.
    [11] Camilli F, Falcone M, Lanucara P, Seghini A. A domain decomposition method for Bellman equations[C] Keyes D E, Xu J C. Proceedings of DDM 7. AMS, Providence, 1994: 477-484
    [12] Zhou S, Zou Z Y. An iterative algorithm for a quasivariational inequality systemrelated to HJB equation[J]. Journal of Computational and Applied Mathematics, 2008, 219(1): 1-8. doi: 10.1016/j.cam.2007.07.013
    [13] 周叔子,陈光华. 解离散HJB方程的一个单调迭代法[J] .应用数学, 2005, 18(4): 639-643.
    [14] Glowinski R, Lions J L, Tremolieres R. Numerical Analysis of Variational Inequalities[M]. Amsterdam: North-Holland, 1981.
    [15] Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. Amsterdam: North-Holland, 1978.
    [16] Hoppe R H W. Multigrid methods for Hamilton-Jacobi-Bellman equations[J]. Numer Math, 1986, 49(2/3): 239-254. doi: 10.1007/BF01389627
  • 加载中
计量
  • 文章访问数:  2095
  • HTML全文浏览量:  170
  • PDF下载量:  1083
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-10-28
  • 刊出日期:  2010-12-15

目录

    /

    返回文章
    返回