留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有界约束非线性系统的结合Lanczos分解技术不精确Newton法

张勇 朱德通

张勇, 朱德通. 有界约束非线性系统的结合Lanczos分解技术不精确Newton法[J]. 应用数学和力学, 2010, 31(12): 1504-1512. doi: 10.3879/j.issn.1000-0887.2010.12.011
引用本文: 张勇, 朱德通. 有界约束非线性系统的结合Lanczos分解技术不精确Newton法[J]. 应用数学和力学, 2010, 31(12): 1504-1512. doi: 10.3879/j.issn.1000-0887.2010.12.011
ZHANG Yong, ZHU De-tong. Inexact Newton Method via Lanczos Decomposed Technique for Solving Box-Constrained Nonlinear Systems[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1504-1512. doi: 10.3879/j.issn.1000-0887.2010.12.011
Citation: ZHANG Yong, ZHU De-tong. Inexact Newton Method via Lanczos Decomposed Technique for Solving Box-Constrained Nonlinear Systems[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1504-1512. doi: 10.3879/j.issn.1000-0887.2010.12.011

有界约束非线性系统的结合Lanczos分解技术不精确Newton法

doi: 10.3879/j.issn.1000-0887.2010.12.011
基金项目: 国家自然科学基金资助项目(10871130);教育部博士点基金资助项目(20093127110005);上海市重点学科资助项目(T0401)
详细信息
    作者简介:

    张勇(1981- ),男,江苏人,博士(E-mail:yzhyzhang@163.com);朱德通(1954- ),男,博士,博士生导师(联系人.Tel:+86-21-64323361;E-mail:dtzhu@shnu.edu.cn).

  • 中图分类号: O221.2

Inexact Newton Method via Lanczos Decomposed Technique for Solving Box-Constrained Nonlinear Systems

  • 摘要: 提出了结合Lanczos分解技术不精确Newton法求解有界变量约束非线性系统.通过Lanczos分解技术解一个仿射二次模型获得迭代方向.利用内点回代线搜索技术,沿着这个方向得到一个可接受的步长.在合理的假设条件下,证明了算法的整体收敛性与局部超线性收敛速率.此外,数值结果表明了算法的有效性.
  • [1] Coleman T F, Li Y. An interior trust-region approach for nonlinear minimization subject to bounds[J]. SIAM J Optim, 1996, 6(2): 418-445. doi: 10.1137/0806023
    [2] Bellavia S, Macconi M, Morini B. An affine scaling trust-region approach to bound-constrained nonlinear systems[J]. Appl Numer Math, 2003, 44(3): 257-280. doi: 10.1016/S0168-9274(02)00170-8
    [3] Jia C A, Zhu D T. An affine scaling interior algorithm via Lanczos path for solving bound-constrained nonlinear systems[J]. Applied Mathematics and Computation, 2008, 195(2): 558-575. doi: 10.1016/j.amc.2007.05.066
    [4] Dembo R S, Eisenstat S C, Steihaug T. Inexact Newton methods[J].SIAM J Numer Anal, 1982, 19(2): 400-408. doi: 10.1137/0719025
    [5] Shen W P, Li C. Kantorovich-type convergence criterion for inexact Newton methods[J].Appl Numer Math, 2009, 59(7): 1599-1611. doi: 10.1016/j.apnum.2008.11.002
    [6] Gould Ni I M, Lucidi S, Roma M, Toint P H L. Solving the trust-region subproblem using the Lanczos method[J]. SIAM Journal on Optimization, 1999, 9(2): 504-525. doi: 10.1137/S1052623497322735
    [7] Gripp R S, Lampariello F, Lucidi S.A nonmonotone line search technique for Newton’s methods[J]. SIAM J Numer Anal, 1986, 23(4): 707-716. doi: 10.1137/0723046
    [8] Guo P H, Zhu D T. A nonmonotonic reduced projected Hessian method via an affine scaling interior modified gradient path for bounded-constrained optimization[J].Journal of Systems Science and Complexity, 2008, 21(1): 85-113. doi: 10.1007/s11424-008-9069-y
    [9] Ortega J M, Rheinboldt W C. Iterative Solution of Nonlinear Equations in Several Variables[M]. New York: Academic Press, 1970.
    [10] Floudas C A, Pardalos P M. Handbook of Test Problems in Local and Global Optimization[M].Dordrecht: KluwTer Academic, 1999.
    [11] Schittkowski K. More Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems[M]. Heidelberg, Berlin: Springer-Verlag, 1981.
  • 加载中
计量
  • 文章访问数:  1439
  • HTML全文浏览量:  170
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  1900-01-01
  • 修回日期:  2010-11-01
  • 刊出日期:  2010-12-15

目录

    /

    返回文章
    返回