[1] |
Coleman T F, Li Y. An interior trust-region approach for nonlinear minimization subject to bounds[J]. SIAM J Optim, 1996, 6(2): 418-445. doi: 10.1137/0806023
|
[2] |
Bellavia S, Macconi M, Morini B. An affine scaling trust-region approach to bound-constrained nonlinear systems[J]. Appl Numer Math, 2003, 44(3): 257-280. doi: 10.1016/S0168-9274(02)00170-8
|
[3] |
Jia C A, Zhu D T. An affine scaling interior algorithm via Lanczos path for solving bound-constrained nonlinear systems[J]. Applied Mathematics and Computation, 2008, 195(2): 558-575. doi: 10.1016/j.amc.2007.05.066
|
[4] |
Dembo R S, Eisenstat S C, Steihaug T. Inexact Newton methods[J].SIAM J Numer Anal, 1982, 19(2): 400-408. doi: 10.1137/0719025
|
[5] |
Shen W P, Li C. Kantorovich-type convergence criterion for inexact Newton methods[J].Appl Numer Math, 2009, 59(7): 1599-1611. doi: 10.1016/j.apnum.2008.11.002
|
[6] |
Gould Ni I M, Lucidi S, Roma M, Toint P H L. Solving the trust-region subproblem using the Lanczos method[J]. SIAM Journal on Optimization, 1999, 9(2): 504-525. doi: 10.1137/S1052623497322735
|
[7] |
Gripp R S, Lampariello F, Lucidi S.A nonmonotone line search technique for Newton’s methods[J]. SIAM J Numer Anal, 1986, 23(4): 707-716. doi: 10.1137/0723046
|
[8] |
Guo P H, Zhu D T. A nonmonotonic reduced projected Hessian method via an affine scaling interior modified gradient path for bounded-constrained optimization[J].Journal of Systems Science and Complexity, 2008, 21(1): 85-113. doi: 10.1007/s11424-008-9069-y
|
[9] |
Ortega J M, Rheinboldt W C. Iterative Solution of Nonlinear Equations in Several Variables[M]. New York: Academic Press, 1970.
|
[10] |
Floudas C A, Pardalos P M. Handbook of Test Problems in Local and Global Optimization[M].Dordrecht: KluwTer Academic, 1999.
|
[11] |
Schittkowski K. More Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems[M]. Heidelberg, Berlin: Springer-Verlag, 1981.
|