留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合微通道中不稳定的广义Couette流

M·L·考兰吉尼 B·K·贾

M·L·考兰吉尼, B·K·贾. 混合微通道中不稳定的广义Couette流[J]. 应用数学和力学, 2011, 32(1): 22-32. doi: 10.3879/j.issn.1000-0887.2011.01.003
引用本文: M·L·考兰吉尼, B·K·贾. 混合微通道中不稳定的广义Couette流[J]. 应用数学和力学, 2011, 32(1): 22-32. doi: 10.3879/j.issn.1000-0887.2011.01.003
M. L. Kaurangini, Basant K. Jha. Unsteady Generalized Couette Flow in Composite Microchannel[J]. Applied Mathematics and Mechanics, 2011, 32(1): 22-32. doi: 10.3879/j.issn.1000-0887.2011.01.003
Citation: M. L. Kaurangini, Basant K. Jha. Unsteady Generalized Couette Flow in Composite Microchannel[J]. Applied Mathematics and Mechanics, 2011, 32(1): 22-32. doi: 10.3879/j.issn.1000-0887.2011.01.003

混合微通道中不稳定的广义Couette流

doi: 10.3879/j.issn.1000-0887.2011.01.003
详细信息
  • 中图分类号: O357.3

Unsteady Generalized Couette Flow in Composite Microchannel

  • 摘要: 在一个平行板通道中,部分充满了均匀的多孔介质,部分为纯流体的流动区,对其微通道中完全发展的不稳定层流进行了数值分析,流动由其中一块板的运动和压力梯度所引起.多孔介质区域的流动,采用扩展的Brinkman模型,即Darcy模型,纯净流动区域的流动,采用Stokes方程.还对稳定的完全发展流进行了理论分析,给出了分界面速度、边界板处的速度和表面摩擦的闭式解.通过数值计算发现,稳定完全发展流的闭式解,和不稳定流动的数值解,在所有时间点上得到很好地吻合.
  • [1] Beavers G S, Joseph D D. Boundary conditions at a naturally permeable wall[J]. Journal of Fluid Mechanics, 1967, 30(1): 197-207. doi: 10.1017/S0022112067001375
    [2] Larson R E, Higdon J J L. Microscopic flow near the surface of two-dimensional porous media—Ⅰ axial flow[J]. Journal of Fluid Mechanics, 1987, 166: 449-472.
    [3] Larson R E, Higdon J J L. Microscopic flow near the surface of two-dimensional porous media—Ⅱ tranverse flow[J].Journal of Fluid Mechanics, 1987, 178: 119-136. doi: 10.1017/S0022112087001149
    [4] Sahraoui M, Kaviany M. Slip and no-slip velocity boundary conditions at interface of porous, plain media[J].International Journal of Heat Mass Transfer, 1992, 35(4): 927-943. doi: 10.1016/0017-9310(92)90258-T
    [5] Nield D A, Bejan A. Convection in Porous Media[M]. New York: Springer-Verlag, 1992.
    [6] Nield D A, Bejan A. Convection in Porous Media[M]. 3rd edition. New York: Springer-Verlag, 2006.
    [7] Kaviany M. Principles of Heat Transfer in Porous Media[M]. New York: Springer-Verlag, 1991.
    [8] Poulikakos D, Kazmierczak M. Forced convection in a duct partially filled with a porous material[J]. ASME Journal of Heat Transfer, 1987, 109(3): 653-662. doi: 10.1115/1.3248138
    [9] Kuznetsov A V. Analytical investigation of Couette flow in a composite channels partially filled with a clear fluid[J]. International Journal of Heat Mass Transfer, 1998, 41(16): 2556-2560. doi: 10.1016/S0017-9310(97)00296-2
    [10] Pantokratoras A. Fully developed Couette flow of three fluids with variable thermo physical properties flowing through a porous medium channel heated asymmetrically with large temperature differences[J]. Journal of Heat Transfer, 2007, 129(12): 1742-1747. doi: 10.1115/1.2768103
    [11] Jaballah S, Bennacer R, Sammouda H, Belghith A. Numerical simulation of mixed convection in a channel irregularly heated and partially filled with a porous medium[J]. Journal of Porous Media, 2008, 11(3): 247-257.
    [12] Siddiqui A M, Zeb A, Ghori Q K. Some exact solutions of 2D steady flow of an incompressible viscous fluid through a porous medium[J].Journal of Porous Media, 2006, 9(6): 491-502. doi: 10.1615/JPorMedia.v9.i6.10
    [13] Jain N C, Gupta P, Sharma B. Three dimensional Couette flow with transpiration cooling through porous medium in slip flow regime[J].Modeling, Measurement and Control B, 2006, 75(5): 33-52.
    [14] Ochoa-Tapia J A, Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid—Ⅰ theoretical development experiment[J]. International Journal Heat Mass Transfer, 1995, 38(14): 2635-2646. doi: 10.1016/0017-9310(94)00346-W
    [15] Ochoa-Tapia J A, Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid—Ⅱ comparison with experiment[J]. International Journal of Heat Mass Transfer, 1995, 38(14): 2647-2655. doi: 10.1016/0017-9310(94)00347-X
    [16] Nield D A. The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface[J]. International Journal of Heat and Fluid Flow, 1991, 12(3): 269-272. doi: 10.1016/0142-727X(91)90062-Z
    [17] Alazmi B, Vafai K. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer[J]. International Journal of Heat and Mass Transfer, 2001, 44(9): 1735-1749. doi: 10.1016/S0017-9310(00)00217-9
    [18] Kuznetsov A V. Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium[J]. Application of Science Research, 1996, 56(1): 53-67. doi: 10.1007/BF02282922
    [19] Kuznetsov A V. Fluid mechanics and heat transfer in the interface region between a porous medium and a fluid layer: a boundary layer solution[J].Journal of Porous Media, 1999, 2(3): 309-321.
    [20] Kuznetsov A V. Fluid flow and heat transfer analysis of Couette flow in a composite duct[J]. Acta Mechanica, 2000,140(3): 163-170. doi: 10.1007/BF01182508
    [21] Oliveski R D C, Marczak L D F. Natural convection in a cavity filled with a porous medium with variable porosity and Darcy number[J].Journal of Porous Media, 2008, 11(7): 655-667. doi: 10.1615/JPorMedia.v11.i7.40
    [22] Zahi N, Boughamoura A, Dhahri H, Nasrallah S B. Flow and heat transfer in a cylinder with a porous medium insert along the compression stroke[J].Journal of Porous Media, 2008, 11(6): 525-540. doi: 10.1615/JPorMedia.v11.i6.20
    [23] Gorla R S R. Heat transfer between two vertical parallel walls partially filled with a porous medium: use of a brinkman-extended Darcy model[J].Journal of Porous Media, 2008, 11(5): 457-466. doi: 10.1615/JPorMedia.v11.i5.30
    [24] Arkilic E B, Breuer K S, Schmitt M A. Gaseous flow in microchannels[C]Application of Microfabrication to Fluid Mechanics, Chicago, 1994, 56-66.
    [25] Beskok A, Karniadakis G E. Simulation of heat and momentum transfer in complex microgeometries[J].Journal of Thermophysics and Heat Transfer, 1994, 8(4): 647-755. doi: 10.2514/3.594
    [26] Choi S B, Barron R F, Warrington R O. Fluid flow and heat transfer in microtubes[C]Micromechanical Sensors, Actuators and Systems, ASME, 1991, 123-134.
    [27] Khaled A R A, Vafai A. The effect of the slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions[J].International Journal of Non-Linear Mechanics, 2004, 39(5): 795-809. doi: 10.1016/S0020-7462(03)00043-X
    [28] Aydin O, Avei M. Heat and fluid flow characteristics of gases in micro pipes[J].International Journal of Heat Mass Transfer, 2006, 49(9/10): 1723-1730. doi: 10.1016/j.ijheatmasstransfer.2005.10.020
    [29] Chen C K, Weng H C. Natural convection in a vertical microchannel[J]. ASME Journal of Heat Transfer, 2005, 127(9):1053-1056. doi: 10.1115/1.1999651
    [30] Khadrawi A F, Othman A, Al-Nimr M A. Transient free convection fluid flow in a vertical microchannel as described by the hyperbolic heat conduction model[J].International Journal of Thermophysics, 2005, 26(3): 905-918. doi: 10.1007/s10765-005-5586-2
    [31] Haddad O M, Abuzaid M M, Al-Nimr M A. Developing free convection gas flow in a vertical open-ended microchannel filled with porous media[J]. Numerical Heat Transfer, Part A, 2005, 48(7): 693-710. doi: 10.1080/10407780590968006
    [32] Gad-el-Hak M. The MEMS Handbook[M]. New York: CRC Press, 2001.
    [33] Ross S L. Differential Equations[M]. 3rd edition. John Wiley & Sons Inc, 2004.
  • 加载中
计量
  • 文章访问数:  1317
  • HTML全文浏览量:  136
  • PDF下载量:  820
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-30
  • 修回日期:  2010-11-22
  • 刊出日期:  2011-01-15

目录

    /

    返回文章
    返回