留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限高狭长压电体中半无限反平面裂纹分析

郭俊宏 刘萍 卢子兴 秦太验

郭俊宏, 刘萍, 卢子兴, 秦太验. 有限高狭长压电体中半无限反平面裂纹分析[J]. 应用数学和力学, 2011, 32(1): 72-78. doi: 10.3879/j.issn.1000-0887.2011.01.008
引用本文: 郭俊宏, 刘萍, 卢子兴, 秦太验. 有限高狭长压电体中半无限反平面裂纹分析[J]. 应用数学和力学, 2011, 32(1): 72-78. doi: 10.3879/j.issn.1000-0887.2011.01.008
GUO Jun-hong, LIU Ping, LU Zi-xing, QIN Tai-yan. Anti-Plane Analysis of a Semi-Infinite Crack in a Piezoelectric Strip[J]. Applied Mathematics and Mechanics, 2011, 32(1): 72-78. doi: 10.3879/j.issn.1000-0887.2011.01.008
Citation: GUO Jun-hong, LIU Ping, LU Zi-xing, QIN Tai-yan. Anti-Plane Analysis of a Semi-Infinite Crack in a Piezoelectric Strip[J]. Applied Mathematics and Mechanics, 2011, 32(1): 72-78. doi: 10.3879/j.issn.1000-0887.2011.01.008

有限高狭长压电体中半无限反平面裂纹分析

doi: 10.3879/j.issn.1000-0887.2011.01.008
基金项目: 国家自然科学基金资助项目(10932001;11072015);北京市教育委员会共建项目建设计划资助项目(KZ201010005003);高等学校博士学科点专项科研基金资助项目(20101102110016);北京航空航天大学博士创新基金(300351)的资助
详细信息
    作者简介:

    郭俊宏(1981- ),男,内蒙古乌兰察人,博士生(E-mail:guojunhong@ase.buaa.edu.cn);卢子兴(1960- ),男,河北枣强人,教授,博士生导师(联系人.Tel:+86-10-82317507;Fax:+86-10-82328501;E-mail:luzixing@buaa.edu.cn).

  • 中图分类号: O346.1

Anti-Plane Analysis of a Semi-Infinite Crack in a Piezoelectric Strip

  • 摘要: 利用保角变换和复变函数方法,研究了裂纹面上受反平面剪应力和面内电载荷共同作用下的有限高狭长压电体中半无限裂纹的断裂问题,给出了电不可通边界条件下裂纹尖端场强度因子和机械应变能释放率的解析解.当狭长体高度趋于无限大时,可得到无限大压电体中半无限裂纹的解析解.若不考虑电场作用,所得解可退化为纯弹性材料的已知结果.此外,通过数值算例,分析了裂纹面上受载长度、狭长体高度以及机电载荷对机械应变能释放率的影响规律.
  • [1] 方岱宁, 刘金喜. 压电与铁电体的断裂力学[M]. 北京:清华大学出版社, 2008.(FANG Dai-ning, LIU Jin-xi. Fracture Mechanics of Piezoelectric and Ferroelectric Solids[M]. Beijing: Tsinghua University Press, 2008. (in Chinese))
    [2] ZHANG Tong-yi, ZHAO Ming-hao, TONG Ping. Fracture of piezoelectric ceramics[J]. Advanced Applied Mechanics, 2002, 38: 147-289. doi: 10.1016/S0065-2156(02)80104-1
    [3] ZHANG Tong-yi, GAO Cun-fa. Fracture behaviors of piezoelectric materials[J]. Theoretical and Applied Fracture Mechanics, 2004, 41(1/3): 339-379. doi: 10.1016/j.tafmec.2003.11.019
    [4] Kuna M. Fracture mechanics of piezoelectric materials-where are we right now?[J]. Engineering Fracture Mechanics, 2010, 77(2): 309-326. doi: 10.1016/j.engfracmech.2009.03.016
    [5] WANG Yong-jian, GAO Cun-fa. The mode III cracks originating from the edge of a circular hole in a piezoelectric solid[J]. International Journal of Solids and Structures, 2008, 45(16): 4590-4599. doi: 10.1016/j.ijsolstr.2008.04.001
    [6] GUO Jun-hong, LU Zi-xing, HAN Hai-tao, YANG Zhen-yu. Exact solutions for anti-plane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material[J]. International Journal of Solids and Structures, 2009, 46(21): 3799-3809. doi: 10.1016/j.ijsolstr.2009.07.002
    [7] GUO Jun-hong, LU Zi-xing, HAN Hai-tao, YANG Zhen-yu. The behavior of two non-symmetrical permeable cracks emanating from an elliptical hole in a piezoelectric solid[J]. European Journal of Mechanics A/Solids, 2010, 29(4): 654-663. doi: 10.1016/j.euromechsol.2010.01.001
    [8] GUO Jun-hong, LU Zi-xing, FENG Xiang. The fracture behavior of multiple cracks emanating from a circular hole in piezoelectric materials[J]. Acta Mechanica, 2010, doi: 10.1007/s 00707-010-0327-4.
    [9] Razzaq A A, Hussain R, Gao C F, Yu J H. Two-dimensional analysis of a semi-infinite crack in piezoelectric media[J]. Mechanics Research Communications, 1998, 25(6): 695-700. doi: 10.1016/S0093-6413(98)00089-5
    [10] LI Xian-fang, FAN Tian-you. Semi-infinite anti-plane crack in a piezoelectric material[J]. International Journal of Fracture, 2000, 102(3): 53-60. doi: 10.1023/A:1007617023726
    [11] LI Xian-fang. Transient response of a piezoelectric material with a semi-infinite mode-Ⅲ crack under impact loads[J]. International Journal of Fracture, 2001, 111(2): 119-130. doi: 10.1023/A:1012208524059
    [12] Li S, Mataga P A. Dynamic crack propagation in piezoelectric materials—part Ⅰ: Electrode solution[J]. Journal of Mechanics and Physics Solids, 1996, 44(11): 1799-1830. doi: 10.1016/0022-5096(96)00055-5
    [13] Li S, Mataga P A. Dynamic crack propagation in piezoelectric materials—part Ⅱ: Vacuum solution[J]. Journal of Mechanics and Physics Solids, 1996, 44(11): 1831-1866. doi: 10.1016/0022-5096(96)00056-7
    [14] 刘淑红, 郭增强, 邹振祝. 含半无限长裂纹压电材料的Ⅲ型强度因子[J]. 中国安全科学学报, 2003, 13(9): 62-64.(LIU Shu-hong, GUO Zeng-qiang, ZOU Zhen-zhu. Mode-Ⅲ intensity factors of semi-infinite crack in a piezoelectric material[J]. China Safety Science Journal, 2003, 13(9): 62-64.(in Chinese))
    [15] FAN Tian-you. Exact solutions of semi-infinite crack in a strip[J]. Chinese Physics Letters, 1990, 44(11): 402-405.
    [16] Park S B, Sun C T. Fracture criteria for piezoelectric ceramics[J]. Journal of the American Ceramic Society, 1995, 78(6): 1475-1480. doi: 10.1111/j.1151-2916.1995.tb08840.x
  • 加载中
计量
  • 文章访问数:  1715
  • HTML全文浏览量:  171
  • PDF下载量:  758
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-06
  • 修回日期:  2010-11-17
  • 刊出日期:  2011-01-15

目录

    /

    返回文章
    返回