留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杂交元零能模式抑制的正交基本变形模式方法

张灿辉 王东东 李同姗

张灿辉, 王东东, 李同姗. 杂交元零能模式抑制的正交基本变形模式方法[J]. 应用数学和力学, 2011, 32(1): 79-92. doi: 10.3879/j.issn.1000-0887.2011.01.009
引用本文: 张灿辉, 王东东, 李同姗. 杂交元零能模式抑制的正交基本变形模式方法[J]. 应用数学和力学, 2011, 32(1): 79-92. doi: 10.3879/j.issn.1000-0887.2011.01.009
ZHANG Can-hui, WANG Dong-dong, LI Tong-shan. Orthogonal Basic Deformation Mode Method for Zero-Energy Mode Suppression of Hybrid Stress Element[J]. Applied Mathematics and Mechanics, 2011, 32(1): 79-92. doi: 10.3879/j.issn.1000-0887.2011.01.009
Citation: ZHANG Can-hui, WANG Dong-dong, LI Tong-shan. Orthogonal Basic Deformation Mode Method for Zero-Energy Mode Suppression of Hybrid Stress Element[J]. Applied Mathematics and Mechanics, 2011, 32(1): 79-92. doi: 10.3879/j.issn.1000-0887.2011.01.009

杂交元零能模式抑制的正交基本变形模式方法

doi: 10.3879/j.issn.1000-0887.2011.01.009
基金项目: 国家自然科学基金资助项目(10972188);中央高校基本科研业务费专项资金资助项目(2010121073);福建省科技基金资助项目(2007F3096)
详细信息
    作者简介:

    张灿辉(1967- ),男,福建人,副教授,博士(联系人.Tel:+86-592-2187887,E-mail:chzhang@xmu.edu.cn).

  • 中图分类号: O242.21

Orthogonal Basic Deformation Mode Method for Zero-Energy Mode Suppression of Hybrid Stress Element

  • 摘要: 通过杂交元位移场直接推导了单元基本变形模式,并且采用联合正交条件提出一种新的正交化方法,所得到的正交基本变形模式不仅具有简单的变形特征而且和材料参数无关,可以方便有效地考察单元性能,为评价不同杂交元提供了一个统一的参考标准.在此基础上利用柔度矩阵正定性给出一种简单有效的零能模式识别方法,并进一步利用基本变形模式和初始应力模式之间耦合关系,提出一种抑制杂交元零能模式的假设应力场方法,同时指出基本变形模式正交性是抑制单元零能模式的充分必要条件.2D-4节点和3D-8节点单元的数值算例说明了该文基本变形模式方法的有效性.
  • [1] Pian T H H. Derivation of element stiffness matrices[J], AIAA Journal, 1964, 2(3): 576-577.
    [2] Chen W J, Cheung Y K. Nonconforming element method and refined hybrid element method for axisymmetric solid[J]. International Journal for Numerical Methods in Engineering, 1996, 39(15): 2509-2529. doi: 10.1002/(SICI)1097-0207(19960815)39:15<2509::AID-NME963>3.0.CO;2-8
    [3] Sze K Y. Admissible matrix formulation-from orthogonal approach to explicit hybrid stabilization[J]. Finite Elements in Analysis and Design, 1996, 24(1): 1-30. doi: 10.1016/0168-874X(95)00026-P
    [4] 张灿辉, 冯伟, 黄黔. 杂交应力元的应力子空间和柔度矩阵H对角化方法[J]. 应用数学和力学, 2002, 23(11): 1124- 1132.(ZHANG Can-hui, FENG Wei, HUANG Qian. The stress subspace of hybrid stress element and the diagonalization method for flexibility matrix H[J]. Applied Mathematics and Mechanics (English Edition), 2002, 23(11): 1263- 1273.)
    [5] 张灿辉, 冯伟, 黄黔. 用单元柔性矩阵H对角化方法建立杂交应力有限单元[J]. 计算力学学报, 2002, 19(4): 409-413.(ZHANG Can-hui, FENG Wei, HUANG Qian. A method of flexibility matrix H diagonalization for constructing hybrid stress finite elements[J]. Chinese Journal of Computational Mechanics, 2002, 19(4): 409-413.(in Chinese))
    [6] Tian Z, Zhao F, Yang Q. Straight free-edge effects in laminated composites[J]. Finite Elements in Analysis and Design, 2004, 41(1): 1-14. doi: 10.1016/j.finel.2004.03.004
    [7] Zhang C, Wang D, Zhang J, Feng W, Huang Q. On the equivalence of various hybrid finite elements and a new orthogonalization method for explicit element stiffness formulation[J]. Finite Elements in Analysis and Design, 2007, 43(4): 321-332. doi: 10.1016/j.finel.2006.11.002
    [8] 张灿辉, 王东东, 张建霖. 三维杂交应力元性能分析的基本变形模式方法[J]. 工程力学, 2009, 26(8): 44-49.(ZHANG Can-hui, WANG Dong-dong, ZHANG Jian-lin. Performance analysis of 3D hybrid stress elements with a basic deformation-based approach[J]. Engineering Mechanics, 2009, 26(8): 44-49.(in Chinese))
    [9] Pian T H H, Wu C C. Hybrid and Incompatible Finite Element Methods[M]. Boca Raton: Chapman & Hall/CRC Press, 2006.
    [10] Babuska I, Oden J T, Lee J K. Mixed-hybrid finite element approximation of second-order elliptic boundary-value problems[J]. Computer Methods in Applied Mechanics and Engineering, 1977, 11(2): 175-206. doi: 10.1016/0045-7825(77)90058-5
    [11] Pian T H H, Chen D P. On the suppression of zero-energy deformation modes[J]. International Journal for Numerical Methods in Engineering, 1983, 19(12): 1741-1752. doi: 10.1002/nme.1620191202
    [12] Pian T H H, Sumihara K. Rational approach for assumed stress finite elements[J]. International Journal for Numerical Methods in Engineering, 1984, 20(9): 1685-1965. doi: 10.1002/nme.1620200911
    [13] Pian T H H, Wu C C. A rational approach for choosing stress terms of hybrid finite element formulations[J]. International Journal for Numerical Methods in Engineering, 1988, 26(10): 2331-2343. doi: 10.1002/nme.1620261014
    [14] HUANG Qian. Modal analysis of deformable bodies with finite degree of deformation freedom-an approach to determination of natural stress modes in hybrid finite elements[C]Chien Wei-zang, FU Zi-zhi. Advances in Applied Mathematics & Mechanics in China. Beijing: IAP (International Academic Publishers), 1991, 3: 283-303.
    [15] Feng W , Hoa S V, Huang Q. Classification of stress modes in assumed stress fields of hybrid finite elements[J]. International Journal for Numerical Methods in Engineering, 1997, 40(23): 4313-4339. doi: 10.1002/(SICI)1097-0207(19971215)40:23<4313::AID-NME259>3.0.CO;2-N
    [16] 张灿辉, 王东东. 一种抑制杂交元零能模式的假设应力场方法[J]. 固体力学学报, 2010, 31(1): 40-47.(ZHANG Can-hui, WANG Dong-dong. An assumed stress method for zero-energy mode suppression in hybrid finite elements[J]. Chinese Journal of Solid Mechanics, 2010, 31(1): 40-47.(in Chinese))
    [17] 张灿辉, 冯伟, 黄黔. 杂交元假设应力模式的变形刚度分析[J]. 应用数学和力学, 2006, 27(7): 757-764.(ZHANG Can-hui, FENG Wei, HUANG Qian. Deformation rigidity of assumed stress modes in hybrid elements[J]. Applied Mathematics and Mechanics(English Edition), 2006, 27(7): 861-869.)
    [18] Han J, Hoa S V. A three-dimensional multilayer composite finite element for stress analysis of composite laminates[J]. International Journal for Numerical Methods in Engineering, 1993,36(22): 3903-3914. doi: 10.1002/nme.1620362209
    [19] Rubinstein R, Punch E F, Atluri S N. An analysis of, and remedies for, kinematic modes in hybrid-stress finite elements: selection of stable, invariant stress fields[J]. Computer Methods in Applied Mechanics and Engineering, 1983, 38(1): 63-92. doi: 10.1016/0045-7825(83)90030-0
  • 加载中
计量
  • 文章访问数:  1736
  • HTML全文浏览量:  178
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-25
  • 修回日期:  2010-11-30
  • 刊出日期:  2011-01-15

目录

    /

    返回文章
    返回