留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用守恒型间断跟踪法数值模拟Richtmyer-Meshkov不稳定现象

M·A·乌拉 高文斌 茅德康

M·A·乌拉, 高文斌, 茅德康. 用守恒型间断跟踪法数值模拟Richtmyer-Meshkov不稳定现象[J]. 应用数学和力学, 2011, 32(1): 113-126. doi: 10.3879/j.issn.1000-0887.2011.01.012
引用本文: M·A·乌拉, 高文斌, 茅德康. 用守恒型间断跟踪法数值模拟Richtmyer-Meshkov不稳定现象[J]. 应用数学和力学, 2011, 32(1): 113-126. doi: 10.3879/j.issn.1000-0887.2011.01.012
M. A. Ullah, GAO Wen-bin, MAO De-kang. Numerical Simulations of Richtmyer-Meshkov Instability Using Conservative Front-Tracking Method[J]. Applied Mathematics and Mechanics, 2011, 32(1): 113-126. doi: 10.3879/j.issn.1000-0887.2011.01.012
Citation: M. A. Ullah, GAO Wen-bin, MAO De-kang. Numerical Simulations of Richtmyer-Meshkov Instability Using Conservative Front-Tracking Method[J]. Applied Mathematics and Mechanics, 2011, 32(1): 113-126. doi: 10.3879/j.issn.1000-0887.2011.01.012

用守恒型间断跟踪法数值模拟Richtmyer-Meshkov不稳定现象

doi: 10.3879/j.issn.1000-0887.2011.01.012
基金项目: 国家自然科学基金资助项目(10971132);上海浦江计划基金资助项目([2006]118)
详细信息
    作者简介:

    M. A. Ullah(1975- ),男,讲师,博士(E-mail:amancubd@yahoo.com);高文斌(1984- ),男,硕士生(E-mail:gusker@hotmail.com);茅德康(1946- ),男,教授(联系人.Tel:+86-21-66134464;E-mail:dkmao@staff.shu.edu.cn).

  • 中图分类号: O242.1;O35

Numerical Simulations of Richtmyer-Meshkov Instability Using Conservative Front-Tracking Method

  • 摘要: 使用茅德康所建立的守恒型间断跟踪法,数值模拟了两个关于Richtmyer-Meshkov不稳定性现象的物理实验,并且将数值模拟结果与Holmes等人在文中所获得的结果进行了比较.该文的结果与Holmes等人所得到的结果在总体上有较好的一致性.该文的数值模拟也捕捉到了非线性的压缩现象,即穿越波和反射波相互作用所产生的现象,Holmes等人指出其是导致介质界面减速的原因.但是所得到的扰动振幅和扰动增长率比Holmes等人所得到的结果略大一些.
  • [1] Richtmyer R D.Taylor instability in shock acceleration of compressible fluids[J].Comm Pure Appl Math, 1960, 13(2): 297-319. doi: 10.1002/cpa.3160130207
    [2] Meshkov E E.Instability of a shock wave accelerated interface between two gases[J].NASA Tech Trans, 1970, F-13: 074.
    [3] Benjamin R, Besnard D, Haas J. Shock and reshock of an unstable interface[R]. LANL Rep Los Alamos National Laboratory, 1993, LA-UR 92-1185.
    [4] Cloutman L D, Wehner M F. Numerical simulation of Richtmyer-Meshkov instabilities[J]. Phys Fluids A, 1992, 4(8): 1821-1830.
    [5] Meyer K A, Blewett P J.Numerical investigation of the stability of a shock-accelerated interface between two fluids[J].Phys Fluids, 1972, 15(5): 753-759. doi: 10.1063/1.1693980
    [6] Holmes R L.A numerical investigation of the Richtmyer-Meshkov instability using front-tracking[D].Ph D Thesis. Stony Broke, USA: State University of New York, 1994.
    [7] Holmes R L, Grove J W, Sharp D H.Numerical investigation of Richtmyer-Meshkov instability using front-tracking[J].J Fluid Mech, 1995, 301: 51-64. doi: 10.1017/S002211209500379X
    [8] Chern I-L, Glimm J, McBryan O, Plohr B, Yaniv S.Front tracking for gas dynamics[J]. J Comput Phys, 1998, 62(1): 83-110.
    [9] Glimm J, Li X L, Liu Y J, Xu Z L, Zhao N. Conservative front-tracking with improved accuracy[J]. SIAM J Numer Anal, 2003, 41(5): 1926-1947. doi: 10.1137/S0036142901388627
    [10] Glimm J, Graham M J, Grove J, Li X L, Smith T M, Tan D, Tangerman F, Zhang Q. Front tracking in two and three dimensions[J]. Comput Math Appl, 1998, 35(7): 1-11.
    [11] Holmes R L, Dimonte G, Fryxell B, Gittings M L, Grove J W, Schneider M, Sharp D H, Velikovich A L,Weaver R P, Zhang Q.Richtmyer-Meshkov instability growth: experiment, simulation and theory[J].J Fluid Mech, 1999, 389: 55-79. doi: 10.1017/S0022112099004838
    [12] Howell B P, Ball G J.Damping of mesh-induced errors in free-Lagrange simulations of Richtmyer-Meshkov instability[J].Shock Waves, 2000, 10(4): 253-264. doi: 10.1007/s001930000055
    [13] Li X L, Zhang Q.A comparative numerical study of the Richtmyer-Meshkov instability with nonlinear anaylsis in two and three dimensions[J].Phys Fluids, 1997, 9(10): 3069-3077. doi: 10.1063/1.869415
    [14] MAO De-kang. Towards front-tracking based on conservation in two space dimensions Ⅱ, tracking discontinuities in capturing fashion[J].J Comput Phys, 2007, 226(2): 1550-1588. doi: 10.1016/j.jcp.2007.06.004
    [15] MAO De-kang. Towards front tracking based on conservation in two space dimensions[J].SIAM J Sci Comput, 2000, 22(1): 113-151. doi: 10.1137/S1064827597310609
    [16] JIANG Guang-shan, SHU Chi-wang. Efficient implementation of weighted ENO schemes[J].J Comput Phys, 1996, 126(1): 202-228. doi: 10.1006/jcph.1996.0130
    [17] LeVeque R J.Finite Volume Methods for Hyperbolic Problems[M].Britain: Press Syndicate of the University of Cambridge, 2002.
    [18] LeVeque R J. Numerical Methods for Conservation Laws[M].Basel, Boston, Berlin: Birkhauser-Verlag, 1990.
    [19] Lax P D, Wendroff B. Systems of conservation laws[J].Comm Pure Appl Math, 1960, 13: 217-237. doi: 10.1002/cpa.3160130205
    [20] Hecht J, Alon U, Shvarts D.Potential flow model of Rayleigh-Taylor and Richtmyer-Meshkov bubble fronts[J].Phys Fluids, 1994, 6(12): 4019-4030. doi: 10.1063/1.868391
  • 加载中
计量
  • 文章访问数:  1541
  • HTML全文浏览量:  159
  • PDF下载量:  651
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-17
  • 修回日期:  2010-12-06
  • 刊出日期:  2011-01-15

目录

    /

    返回文章
    返回