留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柱状纤维上超薄液膜的线性稳定性分析

赵陆海波 胡国辉 周哲玮

赵陆海波, 胡国辉, 周哲玮. 柱状纤维上超薄液膜的线性稳定性分析[J]. 应用数学和力学, 2011, 32(2): 127-134. doi: 10.3879/j.issn.1000-0887.2011.02.001
引用本文: 赵陆海波, 胡国辉, 周哲玮. 柱状纤维上超薄液膜的线性稳定性分析[J]. 应用数学和力学, 2011, 32(2): 127-134. doi: 10.3879/j.issn.1000-0887.2011.02.001
ZHAO Lu-hai-bo, HU Guo-hui, ZHOU Zhe-wei. Linear Instability of Ultra-Thin Liquid Films Flowing Down a Cylindrical Fibre[J]. Applied Mathematics and Mechanics, 2011, 32(2): 127-134. doi: 10.3879/j.issn.1000-0887.2011.02.001
Citation: ZHAO Lu-hai-bo, HU Guo-hui, ZHOU Zhe-wei. Linear Instability of Ultra-Thin Liquid Films Flowing Down a Cylindrical Fibre[J]. Applied Mathematics and Mechanics, 2011, 32(2): 127-134. doi: 10.3879/j.issn.1000-0887.2011.02.001

柱状纤维上超薄液膜的线性稳定性分析

doi: 10.3879/j.issn.1000-0887.2011.02.001
基金项目: 国家自然科学基金资助项目(10772107;10872122);上海市教委科研创新资助项目(08YZ10);上海高校创新团队资助项目
详细信息
    作者简介:

    赵陆海波(1986- ),男,上海人,硕士生(联系人.Tel:+86-21-56332557;E-mail:zhaoluhai-bo@163.com).

  • 中图分类号: O317+.2

Linear Instability of Ultra-Thin Liquid Films Flowing Down a Cylindrical Fibre

  • 摘要: 运用线性理论分析了粘性超薄液膜沿柱状纤维垂直下落的稳定性特征,研究了厚度低于100 nm的薄膜在外力驱动下的流动以及van der Waals力的影响.结果表明随着薄膜相对厚度的下降,纤维表面的曲率将使得线性扰动的发展得到抑制,而van der Waals力促进扰动的增长,这一竞争机制导致了增长率随薄膜相对厚度非单调的变化.还得到了流动的绝对和对流不稳定分区.结果表明van der Waals力扩大绝对不稳定流动区域,表面张力也会有利于绝对不稳定的发展,而外驱动力正好起到相反的作用.
  • [1] Oron A, Davis S H, Bankoff S G. Long-scale evolution of thin liquid films[J]. Review Modern Physics, 1997, 69(3):931-980. doi: 10.1103/RevModPhys.69.931
    [2] Rayleigh Lord. On the stability of liquid jets[J].Proc Lond Math Soc, 1878, 10:4-18. doi: 10.1112/plms/s1-10.1.4
    [3] Kapitza P L, Kapitza S P. Wave flow of thin layers of a viscous fluid[J]. Zh Eksp Teor Fiz, 1949, 19: 105.
    [4] Eggers J. Nonlinear dynamics and breakup of free-surface flows[J]. Rev Mod Phys, 1997, 69(3): 865. doi: 10.1103/RevModPhys.69.865
    [5] Kliakhandler I L, Davis S H, Bankoff S G. Viscous beads on vertical fibre[J]. J Fluid Mech, 2001,429:381-390. doi: 10.1017/S0022112000003268
    [6] Duprat C, Ruyer-Quil C, Kalliadasis S, Giorgiutti-Dauphine F. Absolute and convective instabilities of a viscous film flowing down a vertical fiber[J]. Physical Review Letters, 2007,98(24): 244502. doi: 10.1103/PhysRevLett.98.244502
    [7] Frenkel A L. Nonlinear theory of strongly undulating thin films flowing down vertical cylinders[J]. Europhys Lett, 1992,18(7): 583-588. doi: 10.1209/0295-5075/18/7/003
    [8] Kalliadasis S, Chang H C. Drop formation during coating of vertical fibres[J].J Fluid Mech, 1994, 261:135-168. doi: 10.1017/S0022112094000297
    [9] Chang H C, Demekhin E A. Mechanism for drop formation on a coated vertical fibre[J].J Fluid Mech, 1999, 380:233-255. doi: 10.1017/S0022112098003632
    [10] Lin S P, Lin W C. Instability of film coating of wires and tubes[J]. AIChE J, 1975, 21(4): 775-782. doi: 10.1002/aic.690210420
    [11] Tougou H. Long waves on a film flow of a viscous fluid down the surface of a vertical cylinder[J]. J Phys Soc Jpn, 1977,43(1): 318-325 . doi: 10.1143/JPSJ.43.318
    [12] Craster R V, Matar O K. On viscous beads flowing down a vertical fibre[J]. J Fluid Mech, 2006, 553: 85-105. doi: 10.1017/S0022112006008706
    [13] Ruyer-Quil C, Treveleyan P, Giorgiutti-Dauphine F, Kalliadasis S. Modelling film flows down a fibre[J]. J Fluid Mech, 2008, 603: 431-462.
    [14] Berim G O, Ruckenstein E. Microscopic treatment of a barrel drop on fibers and nanofibers[J]. Journal of Colloid and Interface Science, 2005, 286(2): 681-695. doi: 10.1016/j.jcis.2005.02.028
    [15] Berim G O, Ruckenstein E. Cylindrical droplet on nanofibers: a step toward the clam-shell drop description[J]. J Phys Chem B, 2005, 109(46):12515-12524. doi: 10.1021/jp050021l
    [16] Huerre P, Monkewitz P A. Local and global instabilities in spatially developing flows[J]. Annu Rev Fluid Mech, 1990, 22:473-537. doi: 10.1146/annurev.fl.22.010190.002353
    [17] Brevdo L, Dias F, Bridges T J, Laure P. Linear pulse structure and signalling in a film flow on an inclined plane[J]. J Fluid Mech, 1999,396: 37-71. doi: 10.1017/S0022112099005790
    [18] Chang H-C, Demekhin E A. Complex Wave Dynamics on Thin Films[M].Amsterdam: Elsevier,2002: 412.
    [19] Leib S J, Goldstein M E. The generation of capillary instabilities on a liquid jet[J].J Fluid Mech, 1986, 168: 479-500. doi: 10.1017/S0022112086000472
    [20] 尹协远, 孙德军. 旋涡流动的稳定性[M]. 北京:国防工业出版社, 2003.(YIN Xie-yuan, SUN De-jun. Vortex Stability[M]. Beijing: National Defensive Industry Press, 2003.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1715
  • HTML全文浏览量:  247
  • PDF下载量:  795
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-06
  • 修回日期:  2010-12-07
  • 刊出日期:  2011-02-15

目录

    /

    返回文章
    返回