留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过求解输运方程计算壁面距离

徐晶磊 阎超 范晶晶

徐晶磊, 阎超, 范晶晶. 通过求解输运方程计算壁面距离[J]. 应用数学和力学, 2011, 32(2): 135-143. doi: 10.3879/j.issn.1000-0887.2011.02.002
引用本文: 徐晶磊, 阎超, 范晶晶. 通过求解输运方程计算壁面距离[J]. 应用数学和力学, 2011, 32(2): 135-143. doi: 10.3879/j.issn.1000-0887.2011.02.002
XU Jing-lei, YAN Chao, FAN Jing-jing. Computations of Wall Distances by Solving a Transport Equation[J]. Applied Mathematics and Mechanics, 2011, 32(2): 135-143. doi: 10.3879/j.issn.1000-0887.2011.02.002
Citation: XU Jing-lei, YAN Chao, FAN Jing-jing. Computations of Wall Distances by Solving a Transport Equation[J]. Applied Mathematics and Mechanics, 2011, 32(2): 135-143. doi: 10.3879/j.issn.1000-0887.2011.02.002

通过求解输运方程计算壁面距离

doi: 10.3879/j.issn.1000-0887.2011.02.002
基金项目: 国家重点基础研究发展计划资助项目(2009CB724104);中国博士后科学基金资助项目(20090450285)
详细信息
    作者简介:

    徐晶磊(1982- ),男,湖北钟祥人,博士(联系人.E-mail:xujl@buaa.edu.cn).

  • 中图分类号: V211.3

Computations of Wall Distances by Solving a Transport Equation

  • 摘要: 壁面距离在当代湍流模化中仍然扮演着关键角色,然而苦于遍历计算壁面距离的高昂代价,该文考虑了求解偏微分方程的途径.基于Eikonal方程构造出类Euler形式的输运方程,这样,可以直接利用求解Euler和Navier-Stokes方程的CFD程序使用的高效数值格式和部分代码.基于北航的MI-CFD(CFD for missles)数值平台,详尽地介绍了该输运方程在直角坐标下的求解过程.使用隐式LUSGS时间推进和迎风空间离散,发现该方程具有鲁棒快速的收敛特性.为了保证精度,网格度量系数必须也迎风插值计算.讨论了初始条件和边界条件的特殊处理.成功应用该壁面距离求解方法计算了几个含1-1对应网格和重叠网格的复杂外形.
  • [1] Menter F R. Improved two-equation k-ω turbulence models for aerodynamic flows[R]. NASA-TM-103975, NASA, 1992.
    [2] Spalart P R, Allmaras S. A one-equation turbulence model for aerodynamic flows[R]. AIAA-92-0439, AIAA, 1992.
    [3] Wigton L B. Optimizing CFD codes and algorithms for use on Cray computer[C]Caughey D A, Hafez M M.Frontiers of Computational Fluid Dynamics. Singapore: World Scientific Publishing, 1998: 1-15.
    [4] Spalding D B. Calculation of turbulent heat transfer in cluttered spaces[C]Unpublished paper presented at the 10th International Heat Transfer Conference. Brighton, UK, 1994.
    [5] Sethian J A. Fast marching methods[J]. SIAM Review, 1999, 41(2): 199-235. doi: 10.1137/S0036144598347059
    [6] Tucker P G, Rumsey C L, Spalart P R, Bartels R E, Biedron R T. Computations of wall distances based on differential equations[R]. AIAA-2004-2232, AIAA, 2004.
    [7] Tucker P G. Assessment of geometric multilevel convergence and a wall distance method for flows with multiple internal boundaries[J]. Applied Mathematical Modelling, 1998, 22: 293-311. doi: 10.1016/S0307-904X(98)10007-0
    [8] Menter F R, Egorov Y. A scale-adaptive simulation model using two-equation models[R]. AIAA-2005-1095, AIAA, 2005.
    [9] Yoon S, Jameson A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-1026. doi: 10.2514/3.10007
    [10] Benek J A, Steger J L, Dougherty F C. A flexible grid embedding technique with applications to the Euler equations[R]. AIAA-83-1944, AIAA, 1983.
    [11] 范晶晶, 阎超, 张辉. 重叠网格洞面优化技术的改进与应用[J]. 航空学报, 2010, 31(6):1127-1133.(FAN Jing-jing, YAN Chao, ZHANG Hui. Improvement and application of hole-surface optimization technique in overlapping grid[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1127-1133. (in Chinese))
  • 加载中
计量
  • 文章访问数:  2076
  • HTML全文浏览量:  179
  • PDF下载量:  805
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-17
  • 修回日期:  2010-12-03
  • 刊出日期:  2011-02-15

目录

    /

    返回文章
    返回