留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粘弹性流体流经作依赖时间运动伸展面的三维流动及其传质问题

T·哈亚特 M·穆斯塔法

T·哈亚特, M·穆斯塔法. 粘弹性流体流经作依赖时间运动伸展面的三维流动及其传质问题[J]. 应用数学和力学, 2011, 32(2): 158-170. doi: 10.3879/j.issn.1000-0887.2011.02.004
引用本文: T·哈亚特, M·穆斯塔法. 粘弹性流体流经作依赖时间运动伸展面的三维流动及其传质问题[J]. 应用数学和力学, 2011, 32(2): 158-170. doi: 10.3879/j.issn.1000-0887.2011.02.004
T. Hayat, M. Mustafa. Time-Dependent Three-Dimensional Flow and Mass Transfer of an Elastico-Viscous Fluid Over an Unsteady Stretching Sheet[J]. Applied Mathematics and Mechanics, 2011, 32(2): 158-170. doi: 10.3879/j.issn.1000-0887.2011.02.004
Citation: T. Hayat, M. Mustafa. Time-Dependent Three-Dimensional Flow and Mass Transfer of an Elastico-Viscous Fluid Over an Unsteady Stretching Sheet[J]. Applied Mathematics and Mechanics, 2011, 32(2): 158-170. doi: 10.3879/j.issn.1000-0887.2011.02.004

粘弹性流体流经作依赖时间运动伸展面的三维流动及其传质问题

doi: 10.3879/j.issn.1000-0887.2011.02.004
详细信息
  • 中图分类号: O361

Time-Dependent Three-Dimensional Flow and Mass Transfer of an Elastico-Viscous Fluid Over an Unsteady Stretching Sheet

  • 摘要: 研究粘弹性流体流经伸展面时的三维边界层流动.假定伸展面的运动速度依赖于时间.进一步考虑了更高阶次化学反应对传质的影响.应用同伦分析法(HAM)进行计算.精确地分析了所得级数解的收敛性.用图形讨论了各参数变化对速度和浓度的影响.还给出了面传质数值的计算,将所得结果与前人的数值解进行了比较.
  • [1] Fetecau C, Fetecau C. Starting solutions for some unsteady unidirectional flows of a second grade fluid[J]. International Journal of Engineering Science, 2005, 43(10): 781-789. doi: 10.1016/j.ijengsci.2004.12.009
    [2] Fetecau C, Athar M, Fetecau C. Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate[J]. Computers and Mathematics With Applications, 2008, 57(4): 596-603.
    [3] Fetecau C, Fetecau Corina. Starting solutions for the motion of a second grade fluid due to longitudnal and torsional oscillations of a circular cylinder[J]. International Journal of Engineering Science, 2006, 44(11/12): 788-796. doi: 10.1016/j.ijengsci.2006.04.010
    [4] Tan W C, Xiao P W, Yu X M. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model[J]. International Journal of Nonlinear Mechanics, 2003, 38(5): 645-650. doi: 10.1016/S0020-7462(01)00121-4
    [5] Hayat T, Ahmad N, Ali N. Effects of endoscope and magnetic field on the peristalsis involving Jeffrey fluid[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(8): 1581-1591. doi: 10.1016/j.cnsns.2007.02.008
    [6] Hayat T, Mustafa M, Asghar S. Unsteady flow with heat and mass transfer of a third grade fluid over a stretching surface in presence of chemical reaction[J]. Nonlinear Analysis: Real World Applications, 2010, 11(4): 3186-3197. doi: 10.1016/j.nonrwa.2009.11.012
    [7] Hayat T, Mustafa M, Pop I. Heat and mass transfer for Soret and Dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(5): 1183-1196. doi: 10.1016/j.cnsns.2009.05.062
    [8] Devi C D S, Takhar H S, Nath G. Unsteady mixed convection flow in a stagnation region to adjacent to a vertical surface[J]. Heat and Mass Transfer, 1991, 26(2): 71-79.
    [9] Andersson H I, Aarseth J B, Dandapat B S. Heat transfer in a liquid film on an unsteady stretching surface[J]. International Journal of Heat and Mass Transfer, 2003, 43(1): 69-74.
    [10] Nazar R, Amin N, Pop I. Unsteady boundary layer due to a stretching surface in a rotating fluid[J]. Mechanics Research Communications, 2004, 31(1): 121-128. doi: 10.1016/j.mechrescom.2003.09.004
    [11] Elbashbeshy E M A, Bazid M A A. Heat transfer over an unsteady stretching surface[J]. Heat and Mass Transfer, 2004, 41(1): 1-4. doi: 10.1007/s00231-004-0520-x
    [12] Beard D W, Walters K. Elastico-viscous boundary layer flows I: two-dimensional flow near a stagnation point[J]. Proceedings of the Cambridge, Philosophical Society, 1964, 60(3): 667-674. doi: 10.1017/S0305004100038147
    [13] Ariel P D. Two dimensional stagnation point flow of an elastico-viscous fluid with partial slip[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 2008, 88(4): 320-324. doi: 10.1002/zamm.200700041
    [14] Hayat T, Abbas Z, Pop I. Momentum and heat transfer over a continuously moving surface with a parallel free stream in a viscoelastic fluid[J]. Numerical Methods for Partial Differential Equations, 2010, 26(2): 305-319.
    [15] Cortell R. MHD flow and mass transfer of an electrically fluid of second grade in a porous medium over a stretching sheet with chemically reactive species[J]. Chemical Engineering Processing, 2007, 46(8): 721-728. doi: 10.1016/j.cep.2006.09.008
    [16] Cortell R. Towards an understanding of the motion and mass transfer with chemically reactive species for two classes of viscoelastic fluid over a porous stretching sheet[J]. Chemical Engineering Processing, 2007, 46(10): 982-989. doi: 10.1016/j.cep.2007.05.022
    [17] Nazar R, Latip N A. Numerical investigation of three-dimensional boundary layer flow due to a stretching surface in a viscoelastic fluid[J]. European Journal of Scientific Research, 2009, 29(4): 509-517.
    [18] Mukhopadhyay S. Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching surface in a porous medium[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 3261-3265. doi: 10.1016/j.ijheatmasstransfer.2008.12.029
    [19] Liao S J. A general approach to get series solution of non similarity boundary layer flows[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2144-2159. doi: 10.1016/j.cnsns.2008.06.013
    [20] Xu H, Liao S J, You X C. Analysis of nonlinear fractional partial differential equations with homotopy analysis method[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4): 1152-1156. doi: 10.1016/j.cnsns.2008.04.008
    [21] Xu H, Liao S J. Dual solutions of boundary layer flow over an upstream moving plate[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(2): 350-358. doi: 10.1016/j.cnsns.2006.04.008
    [22] Liao S J. Notes on the homotopy analysis method: some definitions and theorems[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4): 983-997. doi: 10.1016/j.cnsns.2008.04.013
    [23] Tan Y, Abbasbandy S. Homotopy analysis method for quadratic Recati differential equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(3): 539-546. doi: 10.1016/j.cnsns.2006.06.006
    [24] Abbasbandy S. The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation[J]. Physics Letters A, 2008, 372(6): 613-618. doi: 10.1016/j.physleta.2007.07.069
    [25] Abbasbandy S, Zakaria F S. Soliton solution for the fifth-order KdV equation with homotopy analysis method[J]. Nonlinear Dynamics, 2008, 51(1/2): 83-87.
    [26] Kechil S, Hashim I. Approximate analytical solution for MHD stagnation-point flow in porous media[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4): 1346-1354. doi: 10.1016/j.cnsns.2008.02.007
    [27] Hashim I, Abdulaziz O, Momani S. Homotopy analysis method for fractional IVPs[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(3): 674-684. doi: 10.1016/j.cnsns.2007.09.014
    [28] Hayat T, Maqbool K, Asghar S. Hall and heat transfer effects on the steady flow of a Sisko fluid[J]. Zeitschrift fur Naturforschung A, 2009, 64a(1): 769-782.
    [29] Hayat T, Maqbool K, Asghar S. The influence of Hall current and heat transfer on the flow of a fourth grade fluid[J]. Numerical Methods for Partial Differential Equations, 2010, 26(3): 501-518.
    [30] Hayat T, Qasim M, Abbas Z. Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet[J]. Zeitschrift fur Naturforschung A, 2010, 65(1): 231 -239.
    [31] Hayat T, Qasim M, Abbas Z. Homotopy solution for the unsteady threedimensional MHD flow and mass transfer in a porous space[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(9): 2375-2387. doi: 10.1016/j.cnsns.2009.09.013
    [32] Hayat T, Nawaz M. Hall and ion-slip effects on three-dimensional flow of a second grade fluid[J]. International Journal for Numerical Methods in Fluids. doi: 10.1002/fld.2251.
    [33] Hayat T, Sajjad R, Asghar S. Series solution for MHD channel flow of a Jeffery fluid[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(9): 2400-2406. doi: 10.1016/j.cnsns.2009.09.033
    [34] Hayat T, Qasim M, Mesloub S. MHD flow and heat transfer over permeable stretching sheet with slip conditions[J]. International Journal for Numerical Methods in Fluids. doi: 10.1002/fld.2294.
  • 加载中
计量
  • 文章访问数:  1503
  • HTML全文浏览量:  191
  • PDF下载量:  733
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-02
  • 修回日期:  2010-10-29
  • 刊出日期:  2011-02-15

目录

    /

    返回文章
    返回