留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带裂纹三点弯曲试样的动态应力强度因子分析

陈爱军 曹俊俊

陈爱军, 曹俊俊. 带裂纹三点弯曲试样的动态应力强度因子分析[J]. 应用数学和力学, 2011, 32(2): 194-201. doi: 10.3879/j.issn.1000-0887.2011.02.007
引用本文: 陈爱军, 曹俊俊. 带裂纹三点弯曲试样的动态应力强度因子分析[J]. 应用数学和力学, 2011, 32(2): 194-201. doi: 10.3879/j.issn.1000-0887.2011.02.007
CHEN Ai-jun, CAO Jun-jun. Analysis of Dynamic Stress Intensity Factors of Three-Point Bend Specimen Containing Crack[J]. Applied Mathematics and Mechanics, 2011, 32(2): 194-201. doi: 10.3879/j.issn.1000-0887.2011.02.007
Citation: CHEN Ai-jun, CAO Jun-jun. Analysis of Dynamic Stress Intensity Factors of Three-Point Bend Specimen Containing Crack[J]. Applied Mathematics and Mechanics, 2011, 32(2): 194-201. doi: 10.3879/j.issn.1000-0887.2011.02.007

带裂纹三点弯曲试样的动态应力强度因子分析

doi: 10.3879/j.issn.1000-0887.2011.02.007
基金项目: 中国一航航空推进技术验证计划(APTD-1104-02);南京理工大学自主科研专项计划(2010GJPY026)资助
详细信息
    作者简介:

    陈爱军(1972- ),男,江西人,副教授,博士(联系人.E-mail:chen721010@sina.com).

  • 中图分类号: O346.1; O347.1

Analysis of Dynamic Stress Intensity Factors of Three-Point Bend Specimen Containing Crack

  • 摘要: 提出了计算带单边裂纹三点弯曲试样动态应力强度因子的新方法.首先由权函数的普遍形式和两种参考载荷下的应力强度因子,得到了带单边裂纹三点弯曲试样的权函数,然后考虑试样的转动惯性和剪切变形,根据振动理论推导出无裂纹梁内的动应力响应和分布,最后由权函数的思想推导出了带裂纹三点弯曲试样动态应力强度因子公式.通过有限元数值计算,验证了该方法的正确性,结果比较表明公式具有较高的精度.另外,还研究了冲击载荷下三点弯曲试样的动态应力强度因子随裂纹长度和加载速率的变化规律.
  • [1] 刘瑞堂, 姜风春, 刘殿魁. 三点弯曲试样应力强度因子的动态响应[J]. 应用力学学报, 2001,18(3): 116-120.(LIU Rui-tang, JIANG Feng-chun, LIU Dian-kui. History of dynamic stress intensity factor for three-point bending specimen[J]. Chinese Journal of Applied Mechanics, 2001,18(3): 116-120.(in Chinese))
    [2] 钟卫洲, 罗景润, 徐伟芳, 郭历伦. 三点弯曲试样动态应力强度因子计算研究[J]. 实验力学, 2005, 20(4): 601-604.(ZHONG Wei-zhou, LUO Jing-run, XU Wei-fang, GUO Li-lun. A computational study on dynamic stress intensity factor of three-point bending specimen[J]. Journal of Experimental Mechanics, 2005,20(4): 601-604. (in Chinese))
    [3] Loya J A, Fernandez-Saez J. Three-dimensional effects on the dynamic fracture determination of Al 7075-T651 using TPB specimens[J]. International Journal of Solids and Structures, 2008, 45(8): 2203-2219. doi: 10.1016/j.ijsolstr.2007.11.027
    [4] Nash G E. An analysis of the forces and bending moments during the notched beam impact test[J]. International Journal of Fracture Mechanics, 1969, 5(4): 259-268.
    [5] Williams J G. The analysis of dynamic fracture using lumped mass-spring mode[J]. International Journal of Fracture, 1987, 33(1): 47-59. doi: 10.1007/BF00034898
    [6] 李玉龙, 刘元镛. 用弹簧质量模型求解三点弯曲试样的动态应力强度因子[J]. 固体力学学报, 1994, 15(1): 75-79.(LI Yu-long, LIU Yuan-yong. Determination of dynamic stress intensity of specimen of three points bending by spring-mass model[J]. Acta Mechanica Solid Sinica, 1994,15(1): 75-79.(in Chinese))
    [7] 姜风春, 刘瑞堂, 张晓欣. 三点弯曲试样动应力强度因子求解的振动分析方法[J]. 工程力学, 2002, 19(4): 81-84.(JIANG Feng-chun, LIU Rui-tang, ZHANG Xiao-xin. Vibration analysis method used for determining the dynamic stress intensity factor of three-point bending specimen[J]. Engineering Mechanics, 2002,19(4): 81-84. (in Chinese))
    [8] Rice J R. Some remarks on elastic crack-tip stress fields[J]. International Journal of Solids and Structures, 1972,8(6): 751-758. doi: 10.1016/0020-7683(72)90040-6
    [9] 陈爱军, 曾文骥. 权函数法研究高速旋转厚壁筒的应力强度因子[J]. 应用数学和力学, 2006, 27(1): 28-34.(CHEN Ai-jun, ZENG Wen-ji. Weight function for stress intensity factors in rotating thick-walled cylinder[J]. Applied Mathematics and Mechanics (English Edition) , 2006,27(1): 29-35.)
    [10] Shen G, Glinka G. Weight function for a surface semi-elliptical crack in a finite thickness plate[J]. Theoretical and Applied Fracture Mechanics, 1991,15(3): 247-255. doi: 10.1016/0167-8442(91)90023-D
    [11] Fett T, Mattheck C, Munz D. On the evaluation of crack opening displacement from the stress intensity factor [J]. Engineering Fracture Mechanics, 1987,27(3): 697-715. doi: 10.1016/0013-7944(87)90159-7
    [12] Guo K, Bell R, Wang X. The stress intensity factor solutions for edge cracks in a padded plate geometry under general loading conditions[J]. International Journal of Fatigue, 2007, 29(3): 481-488. doi: 10.1016/j.ijfatigue.2006.05.002
    [13] 丁遂栋. 断裂力学[M]. 北京:机械工业出版社, 1997.(DING Sui-dong. Fracture Mechanics[M]. Beijing: China Machine Press,1997.(in Chinese))
    [14] Chen A J, Liao L F, Zhang D G. Analysis of dynamic stress intensity factors of thick-walled cylinder under internal impulsive pressure[J]. Acta Mechanica Sinica, 2009,25(6): 803-810. doi: 10.1007/s10409-009-0297-8
    [15] 吴淇泰. 振动分析[M]. 杭州:浙江大学出版社,1989.(WU Qi-tai.Vibration Analysis[M]. Hangzhou: Zhejiang University Press,1989.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1900
  • HTML全文浏览量:  169
  • PDF下载量:  858
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-29
  • 修回日期:  2010-12-28
  • 刊出日期:  2011-02-15

目录

    /

    返回文章
    返回