[1] |
Karapetyan A V, Rumyantsev V V. Stability of conservative and dissipative systems[J]. Itogi Nauki i Tekhniki, Obshchaya Mekh, 1983, 6: 3-128. (in Russian)
|
[2] |
Karapetyan A V. Stability of Steady Motions[M]. Moscow: Editorial URSS, 1998: 165. (in Russian)
|
[3] |
梅凤翔,史荣昌,张永爱, 朱海平.约束力学系统的运动稳定性[M].北京: 北京理工大学出版社, 1997. (MEI Feng-xiang, SHI Rong-chang, ZHANG Yong-ai, ZHU Hai-ping. Stability of Motion of Constrained Mechanical Systems[M]. Beijing: Beijing Institute of Technology Press, 1997. )
|
[4] |
梅凤翔.关于非线性非完整系统平衡状态的稳定性[J]. 科学通报, 1992,37 (1): 82-85. (MEI Feng-xiang. On stability of equilibrium states of nonlinear nonholonomic systems[J]. Chinese Science Bulletin, 1992, 37(1) 82-85.)
|
[5] |
梅凤翔. On the stability of equilibria of nonlinear nonholonomic systems[J]. 科学通报, 1992, 37(16): 1397-1401. (MEI Feng-xiang. On the stability of equilibria of nonlinear nonholonomic systems[J]. Chinese Science Bulletin, 1992, 37(16): 1397-1401.)
|
[6] |
朱海平,梅凤翔. 关于非完整力学系统相对部分变量的稳定性[J]. 应用数学和力学, 1995, 16(3): 225-233. (ZHU Hai-ping, MEI Feng-xiang. On the stability of nonholonomic mechanical systems with respect to partial variables[J]. Applied Mathematics and Mechanics(English Edition), 1995,16(3): 237-245.)
|
[7] |
Shi R C, Mei F X, Zhu H P. On the stability of the motion of a Birkhoff system[J]. Mechanics Research Communications, 1994, 21(3): 269-272. doi: 10.1016/0093-6413(94)90077-9
|
[8] |
Fu J L, Chen L Q, Luo Y, Luo S K. Stability for the equilibrium state manifold of relativistic Birkhoffian systems[J]. Chinese Physics, 2003, 12(4): 351-356. doi: 10.1088/1009-1963/12/4/301
|
[9] |
Luo S K, Chen X W, Fu J L. Stability theorems for the equilibrium state manifold of non-holonomic systems in a noninertial reference frame[J]. Mechanics Research Communication, 2001, 28 (4): 463-469. doi: 10.1016/S0093-6413(01)00196-3
|
[10] |
Kozlov V V. On the asymptotic motions of systems with dissipation[J]. Journal of Applied Mathematics and Mechanics, 1994, 58(5): 787-792. doi: 10.1016/0021-8928(94)90003-5
|
[11] |
Kozlov V V, Furta S D. Asymptotics of Solutions for Strongly Nonlinear Systems of Differential Equations[M]. Regular and Chaotic Dynamics. Moscow-Izhevsk: Institute of Computer Science, 2009: 312. (in Russian)
|
[12] |
Kozlov V V, Furta S D. Lyapunov’s first method for strongly non-linear systems[J]. Journal of Applied Mathematics and Mechanics, 1996, 60(1):7-18.(in Russian) doi: 10.1016/0021-8928(96)00003-2
|
[13] |
Neimark J I, Fufaev N A. Dynamics of Nonholonomic Systems[M]. Providence, Rhode Island: Am Math Society, 1972.
|
[14] |
Veskovic' M. On the equilibrium stability of mechanical systems with dissipation[J]. Theoretical and Applied Mechanics, 1998, 24: 139-154.
|
[15] |
Cˇovic' V, Veskovic' M, Obradovic' A. On the instability of equilibrium of nonholonomic systems with nonhomogeneous constraints[J]. Mathematical and Computer Modeling, 2010, 51(9/10): 1097-1106. doi: 10.1016/j.mcm.2009.12.017
|
[16] |
V·科维克, M·维什科维克, D·狄加瑞克, A·阿伯拉达维克. 非线性约束下非完整系统的平衡稳定性[J]. 应用数学和力学, 2010,31(6):722-730.(Cˇovic' V, Veskovic' M, D- uric' D, Obradovic' A. On the stability of equilibria of nonholonomic systems with nonlinear constraints[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(6): 751-760.)
|
[17] |
Kozlov V V. On the stability of equilibria of non-holonomic systems[J]. Soviet Math Dokl, 1986,33(3): 654-656. (in Russian)
|
[18] |
Kuznetsov A N. The existence of solutions of an autonomous system, recurring at a singular point, having a formal solution[J]. Funktsional’nyi Analiz i Yego Prilozheniya, 1989, 23(4): 63-74. (in Russian)
|
[19] |
Lyapunov A M. The General Problem of the Stability of Motion[M]. 450. Khar’kov: Mat Obshch, 1892. (in Russian)
|
[20] |
Merkin D R. Introduction to the Theory of the Stability of Motion[M]. Moscow: Nauka, 1987. (in Russian)
|
[21] |
Veskovic' M. On the instability of equilibrium of non-holonomic systems with a non-analytic potential[J]. Int J Non-Linear Mechanics, 1996, 31(4): 459-463. doi: 10.1016/0020-7462(96)00010-8
|
[22] |
Veskovic' M, Cˇovic' V. Lyapunov first method for nonholonomic systems with circulatory forces[J]. Mathematical and Computer Modeling, 2007, 45(9/10): 1145-1156. doi: 10.1016/j.mcm.2006.09.015
|
[23] |
Sosnitskii S N. A certain case of equilibrium instability of nonholonomic voronets systems[J]. International Applied Mechanics, 1989, 25(10): 1040-1045.
|
[24] |
Thomson W, Tait P. Treatise on Natural Philosophy: Part Ⅰ[M]. Cambridge: Cambridge University Press, 1879.
|
[25] |
Cˇovic' V, Veskovic' M. Hagedorn’s theorem in some special cases of rheonomic systems[J]. Mechanics Research Communications, 2005, 32(3): 265-280. doi: 10.1016/j.mechrescom.2004.02.009
|