留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非完整系统有耗散和循环力时的平衡不稳定性

M·韦仕科尉克 V·科尉克 A·奥布拉德尉克

M·韦仕科尉克, V·科尉克, A·奥布拉德尉克. 非完整系统有耗散和循环力时的平衡不稳定性[J]. 应用数学和力学, 2011, 32(2): 202-212. doi: 10.3879/j.issn.1000-0887.2011.02.008
引用本文: M·韦仕科尉克, V·科尉克, A·奥布拉德尉克. 非完整系统有耗散和循环力时的平衡不稳定性[J]. 应用数学和力学, 2011, 32(2): 202-212. doi: 10.3879/j.issn.1000-0887.2011.02.008
M. Vesković, V. Čović, A. Obradović. On the Instability of Equilibrium of Nonholonomic Systems With Dissipation and Circulatory Forces[J]. Applied Mathematics and Mechanics, 2011, 32(2): 202-212. doi: 10.3879/j.issn.1000-0887.2011.02.008
Citation: M. Vesković, V. Čović, A. Obradović. On the Instability of Equilibrium of Nonholonomic Systems With Dissipation and Circulatory Forces[J]. Applied Mathematics and Mechanics, 2011, 32(2): 202-212. doi: 10.3879/j.issn.1000-0887.2011.02.008

非完整系统有耗散和循环力时的平衡不稳定性

doi: 10.3879/j.issn.1000-0887.2011.02.008
基金项目: 塞尔维亚科技发展部出版基金资助项目(ON174016;TR35006)
详细信息
  • 中图分类号: O316

On the Instability of Equilibrium of Nonholonomic Systems With Dissipation and Circulatory Forces

  • 摘要: 讨论定常非完整系统在耗散、保守、循环力作用下的不稳定平衡问题.应用方法是基于运动微分方程解的存在性,当t→-∞时,系统渐近地趋于平衡状态.假定在平衡位置附近,动能、Reyleigh耗散函数、位置力都是无限可微函数.结果将通过一个实例说明.部分结果参见Kozlov V V. On the asymptotic motions of systems with dissipation. Prikl Math Mekh, 1994, 58(4): 31-36. (in Russian); Merkin D R. Introduction to the Theory of the Stability of Motion. Moscow: Nauka, 1987. (in Russian); Thomson W, Tait P. Treatise on Natural Philosophy, Part Ⅰ. Cambridge: Cambridge University Press, 1879.
  • [1] Karapetyan A V, Rumyantsev V V. Stability of conservative and dissipative systems[J]. Itogi Nauki i Tekhniki, Obshchaya Mekh, 1983, 6: 3-128. (in Russian)
    [2] Karapetyan A V. Stability of Steady Motions[M]. Moscow: Editorial URSS, 1998: 165. (in Russian)
    [3] 梅凤翔,史荣昌,张永爱, 朱海平.约束力学系统的运动稳定性[M].北京: 北京理工大学出版社, 1997. (MEI Feng-xiang, SHI Rong-chang, ZHANG Yong-ai, ZHU Hai-ping. Stability of Motion of Constrained Mechanical Systems[M]. Beijing: Beijing Institute of Technology Press, 1997. )
    [4] 梅凤翔.关于非线性非完整系统平衡状态的稳定性[J]. 科学通报, 1992,37 (1): 82-85. (MEI Feng-xiang. On stability of equilibrium states of nonlinear nonholonomic systems[J]. Chinese Science Bulletin, 1992, 37(1) 82-85.)
    [5] 梅凤翔. On the stability of equilibria of nonlinear nonholonomic systems[J]. 科学通报, 1992, 37(16): 1397-1401. (MEI Feng-xiang. On the stability of equilibria of nonlinear nonholonomic systems[J]. Chinese Science Bulletin, 1992, 37(16): 1397-1401.)
    [6] 朱海平,梅凤翔. 关于非完整力学系统相对部分变量的稳定性[J]. 应用数学和力学, 1995, 16(3): 225-233. (ZHU Hai-ping, MEI Feng-xiang. On the stability of nonholonomic mechanical systems with respect to partial variables[J]. Applied Mathematics and Mechanics(English Edition), 1995,16(3): 237-245.)
    [7] Shi R C, Mei F X, Zhu H P. On the stability of the motion of a Birkhoff system[J]. Mechanics Research Communications, 1994, 21(3): 269-272. doi: 10.1016/0093-6413(94)90077-9
    [8] Fu J L, Chen L Q, Luo Y, Luo S K. Stability for the equilibrium state manifold of relativistic Birkhoffian systems[J]. Chinese Physics, 2003, 12(4): 351-356. doi: 10.1088/1009-1963/12/4/301
    [9] Luo S K, Chen X W, Fu J L. Stability theorems for the equilibrium state manifold of non-holonomic systems in a noninertial reference frame[J]. Mechanics Research Communication, 2001, 28 (4): 463-469. doi: 10.1016/S0093-6413(01)00196-3
    [10] Kozlov V V. On the asymptotic motions of systems with dissipation[J]. Journal of Applied Mathematics and Mechanics, 1994, 58(5): 787-792. doi: 10.1016/0021-8928(94)90003-5
    [11] Kozlov V V, Furta S D. Asymptotics of Solutions for Strongly Nonlinear Systems of Differential Equations[M]. Regular and Chaotic Dynamics. Moscow-Izhevsk: Institute of Computer Science, 2009: 312. (in Russian)
    [12] Kozlov V V, Furta S D. Lyapunov’s first method for strongly non-linear systems[J]. Journal of Applied Mathematics and Mechanics, 1996, 60(1):7-18.(in Russian) doi: 10.1016/0021-8928(96)00003-2
    [13] Neimark J I, Fufaev N A. Dynamics of Nonholonomic Systems[M]. Providence, Rhode Island: Am Math Society, 1972.
    [14] Veskovic' M. On the equilibrium stability of mechanical systems with dissipation[J]. Theoretical and Applied Mechanics, 1998, 24: 139-154.
    [15] Cˇovic' V, Veskovic' M, Obradovic' A. On the instability of equilibrium of nonholonomic systems with nonhomogeneous constraints[J]. Mathematical and Computer Modeling, 2010, 51(9/10): 1097-1106. doi: 10.1016/j.mcm.2009.12.017
    [16] V·科维克, M·维什科维克, D·狄加瑞克, A·阿伯拉达维克. 非线性约束下非完整系统的平衡稳定性[J]. 应用数学和力学, 2010,31(6):722-730.(Cˇovic' V, Veskovic' M, D- uric' D, Obradovic' A. On the stability of equilibria of nonholonomic systems with nonlinear constraints[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(6): 751-760.)
    [17] Kozlov V V. On the stability of equilibria of non-holonomic systems[J]. Soviet Math Dokl, 1986,33(3): 654-656. (in Russian)
    [18] Kuznetsov A N. The existence of solutions of an autonomous system, recurring at a singular point, having a formal solution[J]. Funktsional’nyi Analiz i Yego Prilozheniya, 1989, 23(4): 63-74. (in Russian)
    [19] Lyapunov A M. The General Problem of the Stability of Motion[M]. 450. Khar’kov: Mat Obshch, 1892. (in Russian)
    [20] Merkin D R. Introduction to the Theory of the Stability of Motion[M]. Moscow: Nauka, 1987. (in Russian)
    [21] Veskovic' M. On the instability of equilibrium of non-holonomic systems with a non-analytic potential[J]. Int J Non-Linear Mechanics, 1996, 31(4): 459-463. doi: 10.1016/0020-7462(96)00010-8
    [22] Veskovic' M, Cˇovic' V. Lyapunov first method for nonholonomic systems with circulatory forces[J]. Mathematical and Computer Modeling, 2007, 45(9/10): 1145-1156. doi: 10.1016/j.mcm.2006.09.015
    [23] Sosnitskii S N. A certain case of equilibrium instability of nonholonomic voronets systems[J]. International Applied Mechanics, 1989, 25(10): 1040-1045.
    [24] Thomson W, Tait P. Treatise on Natural Philosophy: Part Ⅰ[M]. Cambridge: Cambridge University Press, 1879.
    [25] Cˇovic' V, Veskovic' M. Hagedorn’s theorem in some special cases of rheonomic systems[J]. Mechanics Research Communications, 2005, 32(3): 265-280. doi: 10.1016/j.mechrescom.2004.02.009
  • 加载中
计量
  • 文章访问数:  1839
  • HTML全文浏览量:  223
  • PDF下载量:  767
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-21
  • 修回日期:  2010-11-04
  • 刊出日期:  2011-02-15

目录

    /

    返回文章
    返回