留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大脑皮层信号作用下人体步态节律运动的探讨

董玮 王如彬 张志康

董玮, 王如彬, 张志康. 大脑皮层信号作用下人体步态节律运动的探讨[J]. 应用数学和力学, 2011, 32(2): 213-220. doi: 10.3879/j.issn.1000-0887.2011.02.009
引用本文: 董玮, 王如彬, 张志康. 大脑皮层信号作用下人体步态节律运动的探讨[J]. 应用数学和力学, 2011, 32(2): 213-220. doi: 10.3879/j.issn.1000-0887.2011.02.009
DONG Wei, WANG Ru-bin, ZHANG Zhi-kang. Exploring Human Rhythmic Gait Movement in the Role of Cerebral Cortex Signal[J]. Applied Mathematics and Mechanics, 2011, 32(2): 213-220. doi: 10.3879/j.issn.1000-0887.2011.02.009
Citation: DONG Wei, WANG Ru-bin, ZHANG Zhi-kang. Exploring Human Rhythmic Gait Movement in the Role of Cerebral Cortex Signal[J]. Applied Mathematics and Mechanics, 2011, 32(2): 213-220. doi: 10.3879/j.issn.1000-0887.2011.02.009

大脑皮层信号作用下人体步态节律运动的探讨

doi: 10.3879/j.issn.1000-0887.2011.02.009
基金项目: 国家自然科学基金资助项目(10872068;10672057);中央高校基本科研业务费专项资金资助项目
详细信息
    作者简介:

    董玮(1983- ),女,安徽人,硕士(Tel:+86-21-64250215;E-mail:020060098@163.com);王如彬,男,教授,博士生导师(联系人.Tel:+86-21-64253654;E-mail:rbwang@ecust.edu.cn).

  • 中图分类号: TP183

Exploring Human Rhythmic Gait Movement in the Role of Cerebral Cortex Signal

  • 摘要: 中枢模式发生器可产生节律性运动.目前的中枢模式发生器(CPG)建模研究可以很好地表现CPG的自激行为,但对于人脑信号的调节作用没有讨论.为了体现大脑皮层信号对于CPG网络的调控性,基于Matsuoka神经振荡器的CPG模型,对原有模型中输入刺激与网络内部参数的关联进行了复杂构建,使得模型本身各参数随输入信号的变化而变化,增强了输入信号对于网络自身的影响,令CPG网络不仅仅产生自激状态,同时能够产生自我调节的运动形式,从而体现出大脑信号的调控作用.数值模拟计算结果表明,修正后的模型随着输入刺激的变化可以产生不同模式及不同频率的运动形式,且各不同形式之间可以相互转换,从而在理论上很好地反映出大脑信号在步态节律运动过程中对步态的模式和频率起到了一定的调节作用,实现了各种步态运动之间的行为转换及恢复的功能,从理论上实现了自发节律与大脑调节性节律运动的共存性,做到大脑信号与CPG模型的统一.
  • [1] Brown T G. The intrinsic factors in the act of progression in the mammal[J].Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 1911, 84:308-319. doi: 10.1098/rspb.1911.0077
    [2] Grillner S. Some aspects on the descending control of the spinal circuits generating locomotor movements[C]Herman R M, Grillner S, Stein P, Stuart D. Proceedings of an International Conference on Neural Control of Locomotion, Advances in Behavioral Biology. New York: Plenum, 1976:77-82.
    [3] Kiehn O, Butt S J. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord[J]. Prog Neurobiol, 2003,70(4):347-361. doi: 10.1016/S0301-0082(03)00091-1
    [4] Choi J T, Bastian A J. Adaptation reveals independent control networks for human walking[J]. Nature Neuroscience, 2007, 10:1055-1062. doi: 10.1038/nn1930
    [5] Gerasimenko Y P, Makarovskii A N, Nikitin O A. Control of locomotor activity in humans and animals in the absence of supraspinal influences[J]. Neurosci Behav Physiol, 2002, 32(4): 417-423. doi: 10.1023/A:1015836428932
    [6] ZHANG Ding-guo, ZHU Kuan-yi, ZHENG Hang. Model the leg cycling movement with neural oscillator[C]Piscataway N J. IEEE International Conference on Systems, Man and Cybern. 1.Netherlands: IEEE, 2004: 740-744.
    [7] Warrick H, Cohen A H. Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord[J]. Biol,1985, 116: 27-46.
    [8] ZHANG Ding-guo, ZHU Kuan-yi. Modeling biological motor control for human locomotion with function electrical stimulation[J]. Biol Cybern, 2007, 96(1): 79-97. doi: 10.1007/s00422-006-0107-3
    [9] Marder E, Bucher D. Central pattern generators and the control of rhythmic movements[J]. Current Biology, 2001, 11(23): 986-996. doi: 10.1016/S0960-9822(01)00581-4
    [10] Zehr E P, Fujita K, Stein R B. Regulation of arm and leg movement during human locomotion[J]. The Neuroscientist, 2004, 10(4):347-361. doi: 10.1177/1073858404264680
    [11] Matsuoka K. Mechanisms of frequency and pattern control in the neural rhythm generators[J]. Biol Cybern, 1987, 56(5/6): 345-353. doi: 10.1007/BF00319514
    [12] Ijspeert Auke J, Kodjabachian J. Evolution and development of a central pattern generator for the swimming of a lamprey[J]. Artificial Life, 1999, 3(5):247-269.
    [13] Dutra M S, de Filho P A C,Romano V F. Modeling of a bipedal locomotor using coupled nonlinear oscillators of van der Pol[J]. Biol Cybern, 2003, 88(4): 286-292. doi: 10.1007/s00422-002-0380-8
    [14] 王如彬,张志康,谢智刚. 关于脑信号传输的神经动力学分析[J]. 应用数学和力学, 2009, 30(11):1327-1340.(WANG Ru-bin, ZHANG Zhi-kang, Chi K Tse.Neurodynamics analysis of brain information transmission[J].Applied Mathematics and Mechanics(English Edition), 2009, 30(11): 1415-1428.)
    [15] 张健鹏,王如彬. 基于被动力学的昆虫运动动力学建模与分析[J].力学季刊, 2009, 30(1):39-43.(ZHANG Jian-peng,WANG Ru-bing. Modeling and dynamic analysis of insect locomotion based on passive dynamic[J]. Chinese Quarterly of Mechanics, 2009, 30(1):39-43.(in Chinese))
    [16] ZHANG Zhi-kang, WANG Ru-bin, Yasuda K. On joint stationary probability dendity function of nonlinear dynamic systems[J].Acta Mechanica, 1998,130(1/2): 29-39. doi: 10.1007/BF01187041
    [17] WANG Ru-bin, Kusumoto S. A new equivalent non-linearization technique[J]. Probabilistic Engineering Mechanics, 1996, 11(3): 129-137. doi: 10.1016/0266-8920(96)00001-X
    [18] ZHANG Ding-guo, ZHU Kuan-yi. Computer simulation study on central pattern generator: from biology to engineering[J]. International Journal of Neural System, 2006, 16(6):405-422. doi: 10.1142/S0129065706000810
    [19] 董玮,王如彬,沈恩华, 张志康.节律性步态运动中CPG对肌肉的控制模式的仿真研究[J].动力学与控制学报,2008,6(4):327-331.(DONG Wei, WANG Ru-bin, SHEN En-hua,ZHANG Zhi-kang.The simulation study on the pattern of muscles controlled by CPG in rhythm gait movement[J]. Journal of Dynamics and Control, 2008, 6(4):327-331.(in Chinese ))
    [20] Todorov E.Cosine tuning minimizes motor errors[J]. Neural Computation, 2002, 14(6): 1233-1260. doi: 10.1162/089976602753712918
  • 加载中
计量
  • 文章访问数:  1391
  • HTML全文浏览量:  59
  • PDF下载量:  954
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-26
  • 修回日期:  2010-12-31
  • 刊出日期:  2011-02-15

目录

    /

    返回文章
    返回