留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自反Banach空间内一类新的广义混合平衡问题组的辅助原理和逼近可解性

丁协平

丁协平. 自反Banach空间内一类新的广义混合平衡问题组的辅助原理和逼近可解性[J]. 应用数学和力学, 2011, 32(2): 221-231. doi: 10.3879/j.issn.1000-0887.2011.02.010
引用本文: 丁协平. 自反Banach空间内一类新的广义混合平衡问题组的辅助原理和逼近可解性[J]. 应用数学和力学, 2011, 32(2): 221-231. doi: 10.3879/j.issn.1000-0887.2011.02.010
DING Xie-ping. Auxiliary Principle and Approximation Solvability for a System of New Generalized Mixed Equilibrium Problems in Reflexive Banach Spaces[J]. Applied Mathematics and Mechanics, 2011, 32(2): 221-231. doi: 10.3879/j.issn.1000-0887.2011.02.010
Citation: DING Xie-ping. Auxiliary Principle and Approximation Solvability for a System of New Generalized Mixed Equilibrium Problems in Reflexive Banach Spaces[J]. Applied Mathematics and Mechanics, 2011, 32(2): 221-231. doi: 10.3879/j.issn.1000-0887.2011.02.010

自反Banach空间内一类新的广义混合平衡问题组的辅助原理和逼近可解性

doi: 10.3879/j.issn.1000-0887.2011.02.010
基金项目: 四川省重点学科建设基金资助项目(SZD0406);四川师范大学重点科研基金(09ZDL04)资助
详细信息
    作者简介:

    丁协平(1938- ),男,四川自贡人,教授(联系人.Tel:+86-28-84780952;E-mail:xieping_ding@hotmail.com).

  • 中图分类号: O177.91;O178;O241.7

Auxiliary Principle and Approximation Solvability for a System of New Generalized Mixed Equilibrium Problems in Reflexive Banach Spaces

  • 摘要: 在自反Banach空间内引入和研究了一类新的涉及广义混合似变分不等式问题的广义混合平衡问题组(SGMEP).首先,为了求解 SGMEP,引入了一类辅助广义混合平衡问题组(SAGMEP).在没有任何强制条件的相当温和假设下, 对SAGMEP证明了解的存在性和唯一性.其次, 利用辅助原理技巧,对求解SGMEP建议和分析了一类新的迭代算法.最后,在没有任何强制条件的相当温和假设下,证明了由算法生成的迭代序列的强收敛性.这些结果改进、统一和推广了这一领域内某些最近结果.
  • [1] Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems[J].Math Students, 1994, 63(1): 123-145.
    [2] Moudafi A, Théra M. Proximal and Dynamical Approaches to Equilibrium Problems[M].Lecture Notes in Economics and Mathematical Systems. Vol 477. Berlin: Springer-Verlag, 1999: 187-201.
    [3] Moudafi A. Mixed equilibrium problems: sensitivity analysis and algorithmic aspects[J]. Comput Math Appl, 2002, 44(8/9): 1099-1108. doi: 10.1016/S0898-1221(02)00218-3
    [4] DING Xie-ping. Existence and algorithm of solutions for nonlinear mixed quasi-variational inequalities in Banach spaces[J].J Comput Appl Math, 2003, 157(2): 419-434. doi: 10.1016/S0377-0427(03)00421-7
    [5] DING Xie-ping. Iterative algorithm of solutions for generalized mixed implicit equilibrium-like problems[J]. Appl Math Comput, 2005, 162(2): 799-809. doi: 10.1016/j.amc.2003.12.127
    [6] Ding X P. Existence of solutions and an algorithm for mixed variational-like inequalities in Banach spaces[J]. J Optim Theory Appl, 2005, 127(2): 285-302. doi: 10.1007/s10957-005-6540-y
    [7] DING Xie-ping, YAO Jen-chin. Existence and algorithm of solutions for mixed quasi-variational-like inclusions in Banach spaces[J]. Comput Math Appl, 2005, 49(5/6): 857-869. doi: 10.1016/j.camwa.2004.05.013
    [8] Kazmi K R, Khan F A. Existence and iterative approximation of solutions of generalized mixed equilibrium problems[J]. Comput Math Appl, 2008, 56(5): 1314-1321. doi: 10.1016/j.camwa.2007.11.051
    [9] 丁协平, 王中宝. Banach空间内涉及H-η-单调算子的集值混合拟似变分包含组[J]. 应用数学和力学, 2009, 30(1):1-14.(DING Xie-ping,WANG Zhong-bao. System of set-valued mixed quasi-variational-like inclusions involving H-eta-monotone operators in Banach Spaces[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30(1):1-12.)
    [10] 丁协平. Banach空间内一类广义混合隐平衡问题组解的存在性和迭代算法[J]. 应用数学和力学, 2010, 31(9): 1001-1015.(DING Xie-ping. Existence and algorithm of solutions for a system of generalized mixed implicit equilibrium problems in Banach spaces[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(9): 1049-1062.)
    [11] DING Xie-ping, WANG Zhong-bao. The auxiliary principle and an algorithm for a system of generalized set-valued mixed variational-like inequality problems in Banach spaces[J]. J Comput Appl Math, 2010, 223(11): 2876-2883.
    [12] Ding X P. Auxiliary principle and algorithm for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces[J]. J Optim Theory Appl, 2010, 146(2): 347-357. doi: 10.1007/s10957-010-9651-z
    [13] Antipin A S. Iterative gradient prediction-type methods for computing fixed-point of extremal mappings[C]Guddat J, Jonden H Th, Nizicka F, Still G, Twitt F.Parametric Optimization and Related Topics Ⅳ. Main, Frankfort: Peter Lang, 1997: 11-24.
    [14] DING Xie-ping, Tan Kok-keong. A minimax inequality with applications to existence of equilibrium point and fixed point theorems[J]. Colloq Math, 1992, 63: 233-247.
    [15] Nadler S B. Multivalued contraction mapping[J]. Pacific J Math, 1969, 30: 475-488.
    [16] Pascall D, Sburlan S. Nonlinear Mappings of Monotone Type[M].Alphen aan den Rijn, Netherlands: Sijthoff and Noordhoff International Publishers, 1978.
  • 加载中
计量
  • 文章访问数:  1684
  • HTML全文浏览量:  181
  • PDF下载量:  776
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-16
  • 修回日期:  2010-01-05
  • 刊出日期:  2011-02-15

目录

    /

    返回文章
    返回