[1] |
Goebel K, Kirk W A. Topics in Metric Fixed Point Theory[M].Cambridge Studies in Advanced Mathematics. 28. Cambridge: Cambridge University Press, 1990.
|
[2] |
Byrne C. A unified treatment of some iterative algorithms in signal processing and image reconstruction[J]. Inverse Problems, 2004, 20(1): 103-120. doi: 10.1088/0266-5611/20/1/006
|
[3] |
Censor Y, Motova A, Segal A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem[J]. J Math Anal Appl, 2007, 327(2): 1244-1256. doi: 10.1016/j.jmaa.2006.05.010
|
[4] |
Cianciaruso F, Marino G, Muglia L, Yao Y. On a two-step algorithm for hierarchical fixed points and variational inequalities[J]. J Inequalities and Appl, 2009, Article ID 208692, 13 pages. doi: 10.1155/2009/208692.
|
[5] |
Cianciaruso F, Colao V, Muglia L, Xu H K. On an implicit hierarchical fixed point approach to variational inequalities[J]. Bull Austral Math Soc, 2009, 80(1): 117-124. doi: 10.1017/S0004972709000082
|
[6] |
Mainge P E,Moudafi A. Strong convergence of an iterative method for hierarchical fixed point problems[J]. Pacific J Optim, 2007,3(3): 529-538.
|
[7] |
Marino G, Xu H K. A general iterative method for nonexpansive mappings in Hilbert space[J]. J Math Anal Appl, 2006, 318(1): 43-52. doi: 10.1016/j.jmaa.2005.05.028
|
[8] |
Moudafi A. Krasnoselski-Mann iteration for hierarchical fixed point problems[J]. Inverse Problems, 2007, 23(4): 1635-1640. doi: 10.1088/0266-5611/23/4/015
|
[9] |
Solodov M. An explicit descent method for bilevel convex optimization[J]. J Convex Anal, 2007, 14(2): 227-237.
|
[10] |
Yao Y, Liou Y C. Weak and strong convergence of Krasnoselski-Mann iteration for hierarchical fixed point problems[J]. Inverse Problems, 2008, 24(1): 15015-15022. doi: 10.1088/0266-5611/24/1/015015
|
[11] |
Xu H K. A variable Krasnoselski-Mann algorithm and the multiple-set split feasibility problem[J]. Inverse Problems, 2006, 22(6): 2021-2034. doi: 10.1088/0266-5611/22/6/007
|
[12] |
Xu H K. Viscosity methods for hierarchical fixed point approach to variational inequalities[J]. Taiwanese J Math, 2010, 14(2): 463-478.
|
[13] |
Xu H K. Iterative algorithms for nonlinear operators[J]. J London Math Soc, 2002, 66(1): 240-252. doi: 10.1112/S0024610702003332
|
[14] |
Lions P L. Two remarks on the convergence of convex functions and monotone operators[J]. Nonlinear Anal, 1978, 2(5): 553-562. doi: 10.1016/0362-546X(78)90003-2
|
[15] |
Bruck Jr R E. Properties of fixed point sets of nonexpansive mappings in Banach spaces[J]. Trans Amer Math Soc, 1973, 179: 251-262. doi: 10.1090/S0002-9947-1973-0324491-8
|
[16] |
Yamada I, Ogura N. Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings[J]. Numer Func Anal Optim, 2004, 25(7): 619-655.
|
[17] |
Luo Z Q, Pang J S, Ralph D. Mathematical Programs With Equilibrium Constraints[M]. Cambridge: Cambridge University Press, 1996.
|
[18] |
Cabot A. Proximal point algorithm controlled by a slowly vanishing term: applications to hierarchical minimization[J]. SIAM J Optim, 2005, 15(2): 555-572. doi: 10.1137/S105262340343467X
|