留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分层不动点及变分不等式的粘性方法及应用

张石生 王雄瑞 李向荣 陈志坚

张石生, 王雄瑞, 李向荣, 陈志坚. 分层不动点及变分不等式的粘性方法及应用[J]. 应用数学和力学, 2011, 32(2): 231-240. doi: 10.3879/j.issn.1000-0887.2011.02.011
引用本文: 张石生, 王雄瑞, 李向荣, 陈志坚. 分层不动点及变分不等式的粘性方法及应用[J]. 应用数学和力学, 2011, 32(2): 231-240. doi: 10.3879/j.issn.1000-0887.2011.02.011
ZHANG Shi-sheng, WANG Xiong-rui, H. W. Joseph LEE, Chi Kin CHAN. Viscosity Method for Hierarchical Fixed Point and Variational Inequalities With Applications[J]. Applied Mathematics and Mechanics, 2011, 32(2): 231-240. doi: 10.3879/j.issn.1000-0887.2011.02.011
Citation: ZHANG Shi-sheng, WANG Xiong-rui, H. W. Joseph LEE, Chi Kin CHAN. Viscosity Method for Hierarchical Fixed Point and Variational Inequalities With Applications[J]. Applied Mathematics and Mechanics, 2011, 32(2): 231-240. doi: 10.3879/j.issn.1000-0887.2011.02.011

分层不动点及变分不等式的粘性方法及应用

doi: 10.3879/j.issn.1000-0887.2011.02.011
基金项目: 宜宾学院自然科学基金的资助(2009Z03)
详细信息
    作者简介:

    张石生(1934- ),男,云南曲靖人,教授(联系人.E-mail:changss@yahoo.cn).

  • 中图分类号: O177.91

Viscosity Method for Hierarchical Fixed Point and Variational Inequalities With Applications

  • 摘要: 介绍了处理变分不等式问题的一种分层不动点的粘性方法.这一方法所涉及的映像是非扩张的,而其解是从另一非扩张映像的不动点集中求出.在文末,还把这一结果应用于研究单调变分不等式问题、凸规划问题、分层极小化问题及在不动点集上的二次极小化问题.
  • [1] Goebel K, Kirk W A. Topics in Metric Fixed Point Theory[M].Cambridge Studies in Advanced Mathematics. 28. Cambridge: Cambridge University Press, 1990.
    [2] Byrne C. A unified treatment of some iterative algorithms in signal processing and image reconstruction[J]. Inverse Problems, 2004, 20(1): 103-120. doi: 10.1088/0266-5611/20/1/006
    [3] Censor Y, Motova A, Segal A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem[J]. J Math Anal Appl, 2007, 327(2): 1244-1256. doi: 10.1016/j.jmaa.2006.05.010
    [4] Cianciaruso F, Marino G, Muglia L, Yao Y. On a two-step algorithm for hierarchical fixed points and variational inequalities[J]. J Inequalities and Appl, 2009, Article ID 208692, 13 pages. doi: 10.1155/2009/208692.
    [5] Cianciaruso F, Colao V, Muglia L, Xu H K. On an implicit hierarchical fixed point approach to variational inequalities[J]. Bull Austral Math Soc, 2009, 80(1): 117-124. doi: 10.1017/S0004972709000082
    [6] Mainge P E,Moudafi A. Strong convergence of an iterative method for hierarchical fixed point problems[J]. Pacific J Optim, 2007,3(3): 529-538.
    [7] Marino G, Xu H K. A general iterative method for nonexpansive mappings in Hilbert space[J]. J Math Anal Appl, 2006, 318(1): 43-52. doi: 10.1016/j.jmaa.2005.05.028
    [8] Moudafi A. Krasnoselski-Mann iteration for hierarchical fixed point problems[J]. Inverse Problems, 2007, 23(4): 1635-1640. doi: 10.1088/0266-5611/23/4/015
    [9] Solodov M. An explicit descent method for bilevel convex optimization[J]. J Convex Anal, 2007, 14(2): 227-237.
    [10] Yao Y, Liou Y C. Weak and strong convergence of Krasnoselski-Mann iteration for hierarchical fixed point problems[J]. Inverse Problems, 2008, 24(1): 15015-15022. doi: 10.1088/0266-5611/24/1/015015
    [11] Xu H K. A variable Krasnoselski-Mann algorithm and the multiple-set split feasibility problem[J]. Inverse Problems, 2006, 22(6): 2021-2034. doi: 10.1088/0266-5611/22/6/007
    [12] Xu H K. Viscosity methods for hierarchical fixed point approach to variational inequalities[J]. Taiwanese J Math, 2010, 14(2): 463-478.
    [13] Xu H K. Iterative algorithms for nonlinear operators[J]. J London Math Soc, 2002, 66(1): 240-252. doi: 10.1112/S0024610702003332
    [14] Lions P L. Two remarks on the convergence of convex functions and monotone operators[J]. Nonlinear Anal, 1978, 2(5): 553-562. doi: 10.1016/0362-546X(78)90003-2
    [15] Bruck Jr R E. Properties of fixed point sets of nonexpansive mappings in Banach spaces[J]. Trans Amer Math Soc, 1973, 179: 251-262. doi: 10.1090/S0002-9947-1973-0324491-8
    [16] Yamada I, Ogura N. Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings[J]. Numer Func Anal Optim, 2004, 25(7): 619-655.
    [17] Luo Z Q, Pang J S, Ralph D. Mathematical Programs With Equilibrium Constraints[M]. Cambridge: Cambridge University Press, 1996.
    [18] Cabot A. Proximal point algorithm controlled by a slowly vanishing term: applications to hierarchical minimization[J]. SIAM J Optim, 2005, 15(2): 555-572. doi: 10.1137/S105262340343467X
  • 加载中
计量
  • 文章访问数:  1862
  • HTML全文浏览量:  149
  • PDF下载量:  942
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-02
  • 修回日期:  2011-01-06
  • 刊出日期:  2011-02-15

目录

    /

    返回文章
    返回