留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Banach空间中广义混合平衡问题,变分不等式问题和不动点问题的混杂投影方法

王亚琴 曾六川

王亚琴, 曾六川. Banach空间中广义混合平衡问题,变分不等式问题和不动点问题的混杂投影方法[J]. 应用数学和力学, 2011, 32(2): 241-252. doi: 10.3879/j.issn.1000-0887.2011.02.012
引用本文: 王亚琴, 曾六川. Banach空间中广义混合平衡问题,变分不等式问题和不动点问题的混杂投影方法[J]. 应用数学和力学, 2011, 32(2): 241-252. doi: 10.3879/j.issn.1000-0887.2011.02.012
WANG Ya-qin, ZENG Lu-chuan. Hybrid Projection Method for Generalized Mixed Equilibrium Problems,Variational Inequality Problems and Fixed Point Problems in Banach Spaces[J]. Applied Mathematics and Mechanics, 2011, 32(2): 241-252. doi: 10.3879/j.issn.1000-0887.2011.02.012
Citation: WANG Ya-qin, ZENG Lu-chuan. Hybrid Projection Method for Generalized Mixed Equilibrium Problems,Variational Inequality Problems and Fixed Point Problems in Banach Spaces[J]. Applied Mathematics and Mechanics, 2011, 32(2): 241-252. doi: 10.3879/j.issn.1000-0887.2011.02.012

Banach空间中广义混合平衡问题,变分不等式问题和不动点问题的混杂投影方法

doi: 10.3879/j.issn.1000-0887.2011.02.012
基金项目: 国家自然科学基金资助项目(11071169);绍兴文理学院科研项目(09LG1002)的资助
详细信息
    作者简介:

    王亚琴(1979- ),女,浙江桐乡人,讲师,博士(联系人.E-mail:wangyaqin0579@126.com);曾六川(E-mail:zenglc@hotmail.com).

  • 中图分类号: O177.91

Hybrid Projection Method for Generalized Mixed Equilibrium Problems,Variational Inequality Problems and Fixed Point Problems in Banach Spaces

  • 摘要: 在Banach空间中,一个新的混杂投影迭代程序被引入来逼近广义混合平衡问题解集,变分不等式问题解集和一个相对弱非扩张映射的不动点集的公共元.所得结果改进和推广了最近一些文献的相应结果.
  • [1] Takahashi W.Nonlinear Functional Analysis[M]. Tokyo: Kindikagaku, 1988.(in Japanese).
    [2] 张石生.Banach空间中广义混合平衡问题[J]. 应用数学和力学, 2009, 30(9):1033-1041.(ZHANG Shi-sheng.Generalized mixed equilibrium problem in Banach spaces[J].Applied Mathematics and Mechanics(English Edition), 2009, 30(9):1105-1112.)
    [3] CENG Lu-chuan, YAO Jen-chih.A hybrid iterative scheme for mixed equilibrium problems and fixed point problems[J]. J Comput Appl Math, 2008, 214(1): 186-201. doi: 10.1016/j.cam.2007.02.022
    [4] Takahashi S, Takahashi W.Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space[J].Nonlinear Anal, 2008, 69(3): 1025-1033. doi: 10.1016/j.na.2008.02.042
    [5] Habtu Zegeye, Naseer Shahzad.Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings[J]. Nonlinear Anal, 2009, 70(7):2707-2716. doi: 10.1016/j.na.2008.03.058
    [6] Matsushita S Y, Takahashi W.A strong convergence theorem for relatively nonexpansive mappings in a Banach space[J]. J Approxim Theory, 2005, 134(2): 257-266. doi: 10.1016/j.jat.2005.02.007
    [7] Takahashi W, Zembayashi K.Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces[J].Nonlinear Anal, 2009, 70(1): 45-57. doi: 10.1016/j.na.2007.11.031
    [8] CHANG Shi-sheng, Lee Joseph H W, CHAN Chi-kin.A new hybrid method for solving a generalized equilibrium problem, solving a variational inequality problem and obtaining common fixed points in Banach spaces, with applications[J].Nonlinear Anal, 2010, 73(7): 2260-2270. doi: 10.1016/j.na.2010.06.006
    [9] Alber Y I. Metric and generalized projection operators in Banach spaces: properties and applications[C]Kartsatos A G.Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. New York: Dekker, 1996: 15-50.
    [10] Kamimura S, Takahashi W.Strong convergence of proximal-type algorithm in a Banach space[J]. SIAM J Optim, 2002, 13(3): 938-945. doi: 10.1137/S105262340139611X
    [11] Reich S. A weak convergence theorem for the alternating method with Bergman distance[C]Kartsatos A G.Theory and Applications of Nonlinear Operators of Accretive and Monotone Type.New York: Dekker, 1996: 313-318.
    [12] Butanriu D, Reich S, Zaslavski A J.Asymtotic behavior of relatively nonexpansive operators in Banach spaces[J].J Appl Anal, 2001, 7(2): 151-174.
    [13] Butanriu D, Reich S, Zaslavski A J.Weakly convergence of orbits of nonlinear operators in reflexive Banach spaces[J].Numer Funct Anal Optim, 2003, 24(5): 489-508. doi: 10.1081/NFA-120023869
    [14] XU Hong-kun.Inequalities in Banach spaces with applications[J].Nonlinear Anal, 1991, 16(12):1127-1138. doi: 10.1016/0362-546X(91)90200-K
    [15] Pascali D, Sburlan S.Nonlinear Mappings of Monotone Type[M].Bucaresti, Romania: Editura Academiae, 1978.
    [16] Rockfellar R T.Monotone operators and the proximal point algorith[J].SIAM J Control Optim, 1976, 14(5): 877-898. doi: 10.1137/0314056
  • 加载中
计量
  • 文章访问数:  1696
  • HTML全文浏览量:  183
  • PDF下载量:  834
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-25
  • 修回日期:  2010-12-30
  • 刊出日期:  2011-02-15

目录

    /

    返回文章
    返回