[1] |
Takahashi W.Nonlinear Functional Analysis[M]. Tokyo: Kindikagaku, 1988.(in Japanese).
|
[2] |
张石生.Banach空间中广义混合平衡问题[J]. 应用数学和力学, 2009, 30(9):1033-1041.(ZHANG Shi-sheng.Generalized mixed equilibrium problem in Banach spaces[J].Applied Mathematics and Mechanics(English Edition), 2009, 30(9):1105-1112.)
|
[3] |
CENG Lu-chuan, YAO Jen-chih.A hybrid iterative scheme for mixed equilibrium problems and fixed point problems[J]. J Comput Appl Math, 2008, 214(1): 186-201. doi: 10.1016/j.cam.2007.02.022
|
[4] |
Takahashi S, Takahashi W.Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space[J].Nonlinear Anal, 2008, 69(3): 1025-1033. doi: 10.1016/j.na.2008.02.042
|
[5] |
Habtu Zegeye, Naseer Shahzad.Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings[J]. Nonlinear Anal, 2009, 70(7):2707-2716. doi: 10.1016/j.na.2008.03.058
|
[6] |
Matsushita S Y, Takahashi W.A strong convergence theorem for relatively nonexpansive mappings in a Banach space[J]. J Approxim Theory, 2005, 134(2): 257-266. doi: 10.1016/j.jat.2005.02.007
|
[7] |
Takahashi W, Zembayashi K.Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces[J].Nonlinear Anal, 2009, 70(1): 45-57. doi: 10.1016/j.na.2007.11.031
|
[8] |
CHANG Shi-sheng, Lee Joseph H W, CHAN Chi-kin.A new hybrid method for solving a generalized equilibrium problem, solving a variational inequality problem and obtaining common fixed points in Banach spaces, with applications[J].Nonlinear Anal, 2010, 73(7): 2260-2270. doi: 10.1016/j.na.2010.06.006
|
[9] |
Alber Y I. Metric and generalized projection operators in Banach spaces: properties and applications[C]Kartsatos A G.Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. New York: Dekker, 1996: 15-50.
|
[10] |
Kamimura S, Takahashi W.Strong convergence of proximal-type algorithm in a Banach space[J]. SIAM J Optim, 2002, 13(3): 938-945. doi: 10.1137/S105262340139611X
|
[11] |
Reich S. A weak convergence theorem for the alternating method with Bergman distance[C]Kartsatos A G.Theory and Applications of Nonlinear Operators of Accretive and Monotone Type.New York: Dekker, 1996: 313-318.
|
[12] |
Butanriu D, Reich S, Zaslavski A J.Asymtotic behavior of relatively nonexpansive operators in Banach spaces[J].J Appl Anal, 2001, 7(2): 151-174.
|
[13] |
Butanriu D, Reich S, Zaslavski A J.Weakly convergence of orbits of nonlinear operators in reflexive Banach spaces[J].Numer Funct Anal Optim, 2003, 24(5): 489-508. doi: 10.1081/NFA-120023869
|
[14] |
XU Hong-kun.Inequalities in Banach spaces with applications[J].Nonlinear Anal, 1991, 16(12):1127-1138. doi: 10.1016/0362-546X(91)90200-K
|
[15] |
Pascali D, Sburlan S.Nonlinear Mappings of Monotone Type[M].Bucaresti, Romania: Editura Academiae, 1978.
|
[16] |
Rockfellar R T.Monotone operators and the proximal point algorith[J].SIAM J Control Optim, 1976, 14(5): 877-898. doi: 10.1137/0314056
|