留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Winkler地基上固支薄板自由振动问题的准Green函数方法

李善倾 袁鸿

李善倾, 袁鸿. Winkler地基上固支薄板自由振动问题的准Green函数方法[J]. 应用数学和力学, 2011, 32(3): 253-262. doi: 10.3879/j.issn.1000-0887.2011.03.001
引用本文: 李善倾, 袁鸿. Winkler地基上固支薄板自由振动问题的准Green函数方法[J]. 应用数学和力学, 2011, 32(3): 253-262. doi: 10.3879/j.issn.1000-0887.2011.03.001
LI Shan-qing, YUAN Hong. Quasi-Green’s Function Method for Free Vibration of Clamped Thin Plates on Winkler Foundation[J]. Applied Mathematics and Mechanics, 2011, 32(3): 253-262. doi: 10.3879/j.issn.1000-0887.2011.03.001
Citation: LI Shan-qing, YUAN Hong. Quasi-Green’s Function Method for Free Vibration of Clamped Thin Plates on Winkler Foundation[J]. Applied Mathematics and Mechanics, 2011, 32(3): 253-262. doi: 10.3879/j.issn.1000-0887.2011.03.001

Winkler地基上固支薄板自由振动问题的准Green函数方法

doi: 10.3879/j.issn.1000-0887.2011.03.001
详细信息
    作者简介:

    李善倾(1982- ),男,广西河池人,博士生(E-mail:lishanqing2008@foxmail.com);袁鸿,教授,博士,博士生导师(联系人.Tel:+86-20-85220476;E-mail:tyuanhong@jnu.edu.cn).

  • 中图分类号: O241.8; TU471.2

Quasi-Green’s Function Method for Free Vibration of Clamped Thin Plates on Winkler Foundation

  • 摘要:

    将准Green函数方法应用于求解Winkler地基上固支薄板的自由振动问题.即利用问题的基本解和边界方程构造一个准Green函数,这个函数满足了问题的齐次边界条件.采用Green公式,将Winkler地基上固支薄板自由振动问题的振型控制微分方程化为第二类Fredholm积分方程.通过边界方程的适当选择,积分方程核的奇异性被克服了.数值算例表明,该方法具有较高的精度,是一种有效的数学方法.

  • [1] 曾祥勇, 朱爱军, 邓安福. 自然单元法在Winkler地基薄板计算中的应用[J].计算力学学报, 2008, 25(4):547-551.(ZENG Xiang-yong, ZHU Ai-jun, DENG An-fu. Application of natural element method to solution of elastic thin plate bending on Winkler soil foundation[J]. Chinese Journal of Computational Mechanics, 2008, 25(4): 547-551.(in Chinese))
    [2] 马丽红, 邱志平, 王晓军, 张建辉. Winkler地基板的区间无网格Galerkin方法[J].岩土工程学报, 2008 , 30(3):384-389.(MA Li-hong, QIU Zhi-ping, WANG Xiao-jun, ZHANG Jian-hui. Interval element-free Galerkin method for plates on Winkler foundation[J].Chinese Journal of Geotechnical Engineering, 2008, 30(3): 384-389.(in Chinese))
    [3] 钟阳, 周福霖, 张永山. 弹性地基上四边自由矩形薄板振动分析的Kantorovich法[J].振动与冲击, 2007, 26(3):33-36.(ZHONG Yang, ZHOU Fu-lin, ZHANG Yong-shan. Vibration analysis of a thin plate on Winkler foundation with completely free boundary by Kantorovich method[J].Journal of Vibration and Shock, 2007, 26(3): 33-36.(in Chinese))
    [4] 熊渊博, 龙述尧, 李光耀.弹性地基板分析的局部Petrov-Galerkin方法[J]. 土木工程学报, 2005, 38(11):79-83.(XIONG Yuan-bo, LONG Shu-yao, LI Guang-yao. A local Petrov-Galerkin method for analysis of plates on elastic foundation[J].China Civil Engineering Journal, 2005, 38(11):79-83.(in Chinese))
    [5] 张伟星, 庞辉. 弹性地基板计算的无单元法[J]. 工程力学, 2000 , 17(3):138-144.(ZHANG Wei-xing, PANG Hui. The element-free method for the bending problem of plates on elastic foundation[J].Engineering Mechanics, 2000, 17(3):138-144.(in Chinese))
    [6] 李宁, 吴培德. Winkler地基上弹性薄板求解的有限差分法[J]. 解放军理工大学学报(自然科学版), 2004 , 5(5):64-66.(LI Ning, WU Pei-de. Elastic plate resting on Winkler foundation by finite difference method[J].Journal of PLA University of Science and Technology, 2004, 5(5):64-66.(in Chinese))
    [7] 王元汉, 邱先敏, 张佑启. 弹性地基板的等参有限元法计算[J]. 岩土工程学报, 1998 , 20(4):7-11.(WANG Yuan-han, QIU Xian-min, CHEUNG Y K. Plates on an elastic foundation calculated by isoparametric element methods[J].Chinese Journal of Geotechnical Engineering, 1998, 20(4):7-11.(in Chinese))
    [8] 佘颖禾, 朱万宁. 弹性地基板的无奇异边界元解法[J]. 计算结构力学及其应用, 1991, 8(3):267-274.(SHE Ying-he, ZHU Wan-ning. A boundary element solution for the bending problem of the thin plates on elastic foundation[J].Computational Structural Mechanics and Applications, 1991, 8(3):267-274.(in Chinese))
    [9] 赵雷. 弹性地基板自由振动的样条函数解[J]. 西南交通大学学报, 1993, 91(3):99-104. (ZHAO Lei. Analysis of free vibration problems of plates on elastic foundation by the spline function[J].Journal of Southwest Jiaotong University, 1993, 91(3):99-104.(in Chinese))
    [10] 秦荣, 何昌如. 弹性地基薄板的静力和动力分析[J]. 土木工程学报, 1988, 21(3):71-80. (QIN Rong, HE Chang-ru. Static and dynamic analysis of thin plates on elastic foundation[J].China Civil Engineering Journal, 1988, 21(3):71-80.(in Chinese))
    [11] 王有成, 张伟星. 样条边界元法解Winkler地基板[J].合肥工业大学学报, 1984, (4):15-28. (WANG You-cheng, ZHANG Wei-xing. Spline boundary element method for plates on Winkler foundation[J].Journal of Hefei Polytechnic University, 1984, (4): 15-28.(in Chinese))
    [12] 文丕华. 求解弹性地基圆板问题的点源法[J]. 工程力学, 1987, 4(2):18-26.(WEN Pi-hua. Point intensity method of solving circular plate resting on elastic foundation[J].Engineering Mechanics, 1987, 4(2):18-26.(in Chinese))
    [13] 黄炎. 矩形薄板弹性振动的一般解析解[J]. 应用数学和力学, 1988, 9(11): 993-1000.(HUANG Yan. A general analytical solution for elastic vibration of rectangular thin plate[J]. Applied Mathematics and Mechanics(English Edition), 1988, 9(11): 1057-1065.)
    [14] Selvadurai A P S. Elastic Analysis of Sail-Foundation Interaction[M]. Amsterdam: Elsevier, 1979.
    [15] Katsikadelis J T, Kallivokas L F. Plates on biparametric elastic foundation by BDIE method[J]. Journal for Eng Mech, 1988, 114(5) :847-875. doi: 10.1061/(ASCE)0733-9399(1988)114:5(847)
    [16] 夏世群, 冯正农. 一种求解薄板稳定及振动问题的边界元法[J]. 上海力学, 1992 , 13(1):62-67. (XIA Shi-qun, FENG Zheng-nong. A boundary element method for the stability and vibration problems of thin plates[J].Shanghai Journal of Mechanics, 1992, 13(1):62-67.(in Chinese))
    [17] Jari P, Pentti V. Boundary element analysis of a plate on elastic foundation[J]. International Journal for Numerical Methods in Engineering, 1986, 23(2):287-305. doi: 10.1002/nme.1620230211
    [18] Rvachev V L. Theory of R-Function and Some of Its Application[M]. Kiev: Nauk Dumka, 1982:415-421.( in Russian)
    [19] 袁鸿. Winkler地基上薄板问题的准格林函数方法[J].计算力学学报, 1999, 16(4): 478-482. (YUAN Hong. Quasi-Green’s function method for thin plates on Winkler foundation[J].Chinese Journal Computational Mechanics, 1999, 16(4):478-482.(in Chinese))
    [20] 王红, 袁鸿. 准格林函数方法在弹性扭转问题中的应用[J]. 华南理工大学学报(自然科学版), 2004, 32(11):86-88. (WANG Hong, YUAN Hong. Application of quasi-Green’s function method in elastic torsion[J].Journal of South China University of Technology(Nature Science Edition), 2004, 32(11):86-88.(in Chinese))
    [21] 王红, 袁鸿. R-函数理论在梯形截面柱弹性扭转问题中的应用[J]. 华中科技大学学报(自然科学版), 2005, 33(11):99-101. (WANG Hong, YUAN Hong. Application of R-function theory to the problem of elastic torsion with trapezium sections[J].Journal of Huazhong University of Science & Technology(Nature Science Edition), 2005, 33(11):99-101.(in Chinese))
    [22] 袁鸿, 李善倾, 刘人怀. Pasternak地基上简支板振动问题的准格林函数方法[J]. 应用数学和力学, 2007, 28(7):757-762. (YUAN Hong, LI Shan-qing, LIU Ren-huai. Quasi-Green’s function method for vibration of simply-supported thin polygonic plates on Pasternak foundation[J]. Applied Mathematics and Mechanics(English Edtion), 2007, 28(7):847-853. doi: 10.1007/s10483-007-0701-y.)
    [23] 李善倾, 袁鸿. 简支梯形底扁球壳自由振动问题的准Green函数方法[J]. 应用数学和力学, 2010, 31(5):602-608. (LI Shan-qing, YUAN Hong. Quasi-Green’s function method for free vibration of simply-supported trapezoidal shallow spherical shell[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(5):635-642. doi: 10.1007/s10483-010-0511-7.)
    [24] 曹志远. 板壳振动理论[M]. 北京:中国铁道出版社, 1989. (CAO Zhi-yuan. Vibration Theory of Plates and Shells[M].Beijing: China Railway Press, 1989.(in Chinese))
    [25] Ortner V N. Regularisierte faltung von distributionen—teil 2: eine tabelle von fundame ntallocunngen[J]. ZAMP, 1980, 31(1):155-173. doi: 10.1007/BF01601710
    [26] Kurpa L V. Solution of the problem of deflection and vibration of plates by the R-function method[J]. Inter Appl Mech, 1984, 20(5):470-473.
  • 加载中
计量
  • 文章访问数:  1876
  • HTML全文浏览量:  235
  • PDF下载量:  731
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-27
  • 修回日期:  2011-01-14
  • 刊出日期:  2011-03-15

目录

    /

    返回文章
    返回