[1] |
Nogales E. Structural insights into microtubule function[J].Annu Rev Biochem, 2000, 69(1): 277-302. doi: 10.1146/annurev.biochem.69.1.277
|
[2] |
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Roberts P.Molecular Biology of the Cell[M]. 4th ed. New York:Garland Science Publishing, 2005, 1463.
|
[3] |
Carter N J, Cross R A. Mechanics of the kinesin step[J] Nature, 2005, 435(3):308-312.
|
[4] |
Schoutens J E J. A model describing bending in flagella[J]. J Biol Phys, 2004, 30(2): 97-122. doi: 10.1023/B:JOBP.0000035852.95326.79
|
[5] |
Boal D. Mechanics of the Cell[M]. Cambridge: Cambridge University Press, 2002.
|
[6] |
Kolodney M S, Wysolmerski R B. Isometric contraction by fibroblasts and Endothelial cells in tissue culture: a quantitative study[J]. J Cell Biol, 1992, 117(1):73-82. doi: 10.1083/jcb.117.1.73
|
[7] |
Stamenovic D, Liang Z L, Chen J X, Wang N. Effect of the cytoskeletal prestress on the mechanical impedance of cultured airway smooth muscle cells[J]. J Appl Physiol, 2002, 92(4): 1443-1450.
|
[8] |
Zheng J, Buxbaum R E, Heidemann S R. Investigation of microtubule assembly and organization accompanying tension-induced neurite initiation[J] J Cell Sci,1993, 104(4): 1239-1250.
|
[9] |
Odde D J, Ma L, Briggs A H, Demarco A, Kirschner M W. Microtubule bending and breaking in living cells[J]. J Cell Sci, 1999, 112(19): 3283-3288.
|
[10] |
Needleman D J, Ojeda-Lopez M A, Raviv U, Ewert K, Miller H P , Wilson L, Safinya C R. Radial compression of microtubules and the mechanism of action of taxol and associated proteins[J].Biophys J, 2005, 89(5): 3410-3423. doi: 10.1529/biophysj.104.057679
|
[11] |
Needleman D J, Ojeda-Lopez M A, Raviv U, Ewert K, Jones J B, Miller H P L, Wilso L, Safinya C R. Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions[J]. Phys Rev Lett, 2004, 93(19): 1981041-1981044.
|
[12] |
Felgner H, Frank R, Biernat J, Mandelkow E M, Madelkow E, Ludin B, Matus A, Schliwa M. Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules[J]. J Cell Biol,1997, 138(5):1067-1075. doi: 10.1083/jcb.138.5.1067
|
[13] |
Brangwynne C P, MacKintosh F C, Kumar S, Geisse N A, Talbot J, Mahadevan L, Parker K K, Ingber D E, Weitz D A. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement[J]. The Journal of Cell Biology, 2006, 173(5): 733-741. doi: 10.1083/jcb.200601060
|
[14] |
Li T. A mechanics model of microtubule buckling in living cells[J]. J Biomech, 2008, 41 (8): 1722-1729. doi: 10.1016/j.jbiomech.2008.03.003
|
[15] |
Wang C Y, Ru C Q, Mioduchowski A. Orthotropic elastic shell model for buckling of microtubules[J]. Physical Review E, 2006, 74(5): 052901. doi: 10.1103/PhysRevE.74.052901
|
[16] |
Kis A, Kasas S, Babicˇ B, Kulik A J, Benot W, Briggs G A D, Schnenberger C, Catsicas S, Forr L. Nanomechanics of microtubules[J]. Physical Review Letters, 2002, 89(24): 248101. doi: 10.1103/PhysRevLett.89.248101
|
[17] |
Nogales E, Whittaker M, Milligan R A, Downing K H. High-resolution model of the microtubule[J] Cell, 1999, 96(1): 79-88.
|
[18] |
Qian X S, Zhang J Q, Ru C Q. Wave propagation in orthotropic microtubules[J]. J Appl Phys, 2007, 101(8): 084702. doi: 10.1063/1.2717573
|
[19] |
Lourie O, Cox D M, Wagner H D. Buckling and collapse of embedded carbon nanotubes[J]. Phys Rev Lett, 1998, 81(8): 1638-1641. doi: 10.1103/PhysRevLett.81.1638
|
[20] |
Yoon J, Ru C Q, Mioduchowski A. Sound wave propagation in multiwall carbon nanotubes [J]. J Appl Phys, 2003, 93(8): 4801-4806. doi: 10.1063/1.1559932
|
[21] |
Ventsel E, Krauthammer T. Thin Plates and Shells[M]. New York: Marcel Dekker, 2004.
|
[22] |
Pablo de P J, Schaap I A T , Mackintosh F C, Schmidt C F. Deformation and collapse of microtubules on the nanometer scale[J]. Physical Review Letters, 2003, 91(9): 098101- 098114. doi: 10.1103/PhysRevLett.91.098101
|
[23] |
Sirenko M, Stroscio M, Kim K W. Elastic vibrations of microtubules in a fluid[J]. Phys Rev E, 1996, 53 (1): 1003-1010. doi: 10.1103/PhysRevE.53.1003
|
[24] |
Flugge W. Stresses in Shells[M]. Berlin: Springer-Verlag, 1960.
|
[25] |
Ofek G, Natoli R M, Athanasiou K A. In situ mechanical properties of the chondrocyte cytoplasm and nucleus[J]. J Biomech, 2009, 42(7): 873-877. doi: 10.1016/j.jbiomech.2009.01.024
|
[26] |
Leipzing N D, Athanasiou K A. Unconfined creep compression of chondrocytes[J]. J Biomech, 2005, 38(1): 77-85. doi: 10.1016/j.jbiomech.2004.03.013
|
[27] |
Peng Z H, Yang J M, Si S H, Fang D C, Chen W S, Luo Y H. Effects of metastasis-suppressor gene KAI1 on viscoelastic properties of hepatocellular carcinoma MHCC97-H cells with high metastatic potential[J]. World Chin J Digestol, 2004, 12(5): 1040.
|
[28] |
Chajes A. Principles of Structural Stability Theory[M]. Englewood Cliffs NJ: Prentice-Hall, 1974.
|