留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性介质中正交各向异性微管的屈曲分析

穆罕默德·塔杰 张俊乾

穆罕默德·塔杰, 张俊乾. 弹性介质中正交各向异性微管的屈曲分析[J]. 应用数学和力学, 2011, 32(3): 279-285. doi: 10.3879/j.issn.1000-0887.2011.03.004
引用本文: 穆罕默德·塔杰, 张俊乾. 弹性介质中正交各向异性微管的屈曲分析[J]. 应用数学和力学, 2011, 32(3): 279-285. doi: 10.3879/j.issn.1000-0887.2011.03.004
Muhammad Taj, ZHANG Jun-qian. Buckling of Embedded Microtubules in Elastic Medium[J]. Applied Mathematics and Mechanics, 2011, 32(3): 279-285. doi: 10.3879/j.issn.1000-0887.2011.03.004
Citation: Muhammad Taj, ZHANG Jun-qian. Buckling of Embedded Microtubules in Elastic Medium[J]. Applied Mathematics and Mechanics, 2011, 32(3): 279-285. doi: 10.3879/j.issn.1000-0887.2011.03.004

弹性介质中正交各向异性微管的屈曲分析

doi: 10.3879/j.issn.1000-0887.2011.03.004
基金项目: 国家自然科学基金资助项目(10772105);上海市重点学科建设资助项目(S30106)
详细信息
    作者简介:

    Muhammad Taj(穆罕默德·塔杰),博士生(E-mail:muhammad_taj75@yahoo.com);张俊乾,教授(联系人.Tel:+86-21-66134972;E-mail:jqzhang2@shu.edu.cn).

  • 中图分类号: O343;Q66

Buckling of Embedded Microtubules in Elastic Medium

  • 摘要: 已有实验表明,处于细胞质中的微管可以比自由微管承受更大的压力而不发生屈曲.基于嵌入式碳纳米管屈曲的Winkler模型,利用正交各向异性情形的Winkler模型研究了细胞质中充当细胞骨架的微管的屈曲行为.计算表明,本模型可以较好地预测嵌入弹性介质中的微管较自由微管承受更大屈曲压力这一现象,而且所得到的临界屈曲压力与微管受压屈曲的实验值吻合\.同时,所得的结果也表明周围介质与微管的相互作用可以极大地提高微管抵抗屈曲的能力,该结果很好地阐释了介质与微管相互作用从而提高微管抗屈曲压力的相互作用机制\.模拟结果表明,所给出的模型可以对嵌入弹性介质中的微管的屈曲行为进行很好地模拟.
  • [1] Nogales E. Structural insights into microtubule function[J].Annu Rev Biochem, 2000, 69(1): 277-302. doi: 10.1146/annurev.biochem.69.1.277
    [2] Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Roberts P.Molecular Biology of the Cell[M]. 4th ed. New York:Garland Science Publishing, 2005, 1463.
    [3] Carter N J, Cross R A. Mechanics of the kinesin step[J] Nature, 2005, 435(3):308-312.
    [4] Schoutens J E J. A model describing bending in flagella[J]. J Biol Phys, 2004, 30(2): 97-122. doi: 10.1023/B:JOBP.0000035852.95326.79
    [5] Boal D. Mechanics of the Cell[M]. Cambridge: Cambridge University Press, 2002.
    [6] Kolodney M S, Wysolmerski R B. Isometric contraction by fibroblasts and Endothelial cells in tissue culture: a quantitative study[J]. J Cell Biol, 1992, 117(1):73-82. doi: 10.1083/jcb.117.1.73
    [7] Stamenovic D, Liang Z L, Chen J X, Wang N. Effect of the cytoskeletal prestress on the mechanical impedance of cultured airway smooth muscle cells[J]. J Appl Physiol, 2002, 92(4): 1443-1450.
    [8] Zheng J, Buxbaum R E, Heidemann S R. Investigation of microtubule assembly and organization accompanying tension-induced neurite initiation[J] J Cell Sci,1993, 104(4): 1239-1250.
    [9] Odde D J, Ma L, Briggs A H, Demarco A, Kirschner M W. Microtubule bending and breaking in living cells[J]. J Cell Sci, 1999, 112(19): 3283-3288.
    [10] Needleman D J, Ojeda-Lopez M A, Raviv U, Ewert K, Miller H P , Wilson L, Safinya C R. Radial compression of microtubules and the mechanism of action of taxol and associated proteins[J].Biophys J, 2005, 89(5): 3410-3423. doi: 10.1529/biophysj.104.057679
    [11] Needleman D J, Ojeda-Lopez M A, Raviv U, Ewert K, Jones J B, Miller H P L, Wilso L, Safinya C R. Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions[J]. Phys Rev Lett, 2004, 93(19): 1981041-1981044.
    [12] Felgner H, Frank R, Biernat J, Mandelkow E M, Madelkow E, Ludin B, Matus A, Schliwa M. Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules[J]. J Cell Biol,1997, 138(5):1067-1075. doi: 10.1083/jcb.138.5.1067
    [13] Brangwynne C P, MacKintosh F C, Kumar S, Geisse N A, Talbot J, Mahadevan L, Parker K K, Ingber D E, Weitz D A. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement[J]. The Journal of Cell Biology, 2006, 173(5): 733-741. doi: 10.1083/jcb.200601060
    [14] Li T. A mechanics model of microtubule buckling in living cells[J]. J Biomech, 2008, 41 (8): 1722-1729. doi: 10.1016/j.jbiomech.2008.03.003
    [15] Wang C Y, Ru C Q, Mioduchowski A. Orthotropic elastic shell model for buckling of microtubules[J]. Physical Review E, 2006, 74(5): 052901. doi: 10.1103/PhysRevE.74.052901
    [16] Kis A, Kasas S, Babicˇ B, Kulik A J, Benot W, Briggs G A D, Schnenberger C, Catsicas S, Forr L. Nanomechanics of microtubules[J]. Physical Review Letters, 2002, 89(24): 248101. doi: 10.1103/PhysRevLett.89.248101
    [17] Nogales E, Whittaker M, Milligan R A, Downing K H. High-resolution model of the microtubule[J] Cell, 1999, 96(1): 79-88.
    [18] Qian X S, Zhang J Q, Ru C Q. Wave propagation in orthotropic microtubules[J]. J Appl Phys, 2007, 101(8): 084702. doi: 10.1063/1.2717573
    [19] Lourie O, Cox D M, Wagner H D. Buckling and collapse of embedded carbon nanotubes[J]. Phys Rev Lett, 1998, 81(8): 1638-1641. doi: 10.1103/PhysRevLett.81.1638
    [20] Yoon J, Ru C Q, Mioduchowski A. Sound wave propagation in multiwall carbon nanotubes [J]. J Appl Phys, 2003, 93(8): 4801-4806. doi: 10.1063/1.1559932
    [21] Ventsel E, Krauthammer T. Thin Plates and Shells[M]. New York: Marcel Dekker, 2004.
    [22] Pablo de P J, Schaap I A T , Mackintosh F C, Schmidt C F. Deformation and collapse of microtubules on the nanometer scale[J]. Physical Review Letters, 2003, 91(9): 098101- 098114. doi: 10.1103/PhysRevLett.91.098101
    [23] Sirenko M, Stroscio M, Kim K W. Elastic vibrations of microtubules in a fluid[J]. Phys Rev E, 1996, 53 (1): 1003-1010. doi: 10.1103/PhysRevE.53.1003
    [24] Flugge W. Stresses in Shells[M]. Berlin: Springer-Verlag, 1960.
    [25] Ofek G, Natoli R M, Athanasiou K A. In situ mechanical properties of the chondrocyte cytoplasm and nucleus[J]. J Biomech, 2009, 42(7): 873-877. doi: 10.1016/j.jbiomech.2009.01.024
    [26] Leipzing N D, Athanasiou K A. Unconfined creep compression of chondrocytes[J]. J Biomech, 2005, 38(1): 77-85. doi: 10.1016/j.jbiomech.2004.03.013
    [27] Peng Z H, Yang J M, Si S H, Fang D C, Chen W S, Luo Y H. Effects of metastasis-suppressor gene KAI1 on viscoelastic properties of hepatocellular carcinoma MHCC97-H cells with high metastatic potential[J]. World Chin J Digestol, 2004, 12(5): 1040.
    [28] Chajes A. Principles of Structural Stability Theory[M]. Englewood Cliffs NJ: Prentice-Hall, 1974.
  • 加载中
计量
  • 文章访问数:  1475
  • HTML全文浏览量:  109
  • PDF下载量:  641
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-21
  • 修回日期:  2011-01-21
  • 刊出日期:  2011-03-15

目录

    /

    返回文章
    返回