Stability Analysis of Radial Inflation of Incompressible Composite Rubber Tubes
-
摘要: 研究由两类不可压缩的橡胶材料组成的层合圆柱形管道,在内表面受到突加的径向压力作用时的膨胀机理.建立了问题的数学模型;利用材料的不可压缩条件、边界条件以及圆管的径向位移和径向应力的连续性条件将相应的控制方程约化为一个二阶非线性常微分方程,并得到了该方程的首次积分.给出了管道拟静态膨胀和动态膨胀的定性分析,特别地,结合数值算例讨论了材料参数、结构参数以及径向压力对管道径向膨胀和非线性周期振动的影响.Abstract: The inflation mechanism was examined for a composite cylindrical tube composed of two incompressible rubber materials,where the inner surface of the tube was subjected to a suddenly applied radial pressure.The mathematical model of the problem was formulated and the corresponding governing equation was reduced to a second order ordinary differential equation by using the incompressible condition of the material,the boundary conditions and the continuity conditions of radial displacement and radial stress of the cylindrical tube,moreover,the first integral of the equation was obtained.The qualitative analyses of static inflation and dynamic inflation of the tube were presented,particularly,the effects of material parameters,structure parameters and radial pressure on radial inflation and nonlinearly periodic oscillation of the tube were discussed by combining numerical examples.
-
Key words:
- composite rubber tube /
- radial inflation /
- stability /
- nonlinearly periodic oscillation
-
[1] Beatty M F. Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples[J]. Applied Mechanics Review, 1987, 40(12): 1699-1733. doi: 10.1115/1.3149545 [2] FU Yi-bin, Ogden R W. Nonlinear Elasticity: Theory and Applications[M]. London Mathematical Society Lecture Note Series, 2001, 283. [3] Attard M M. Finite strain—isotropic hyperelasticity[J]. International Journal of Solids and Structures, 2003, 40(17): 4353-4378. doi: 10.1016/S0020-7683(03)00217-8 [4] Haughton D M, Kirkinis E. A comparison of stability and bifurcation criteria for inflated spherical elastic shells[J]. Math Mech Solids, 2003, 8(5): 561-572. doi: 10.1177/10812865030085008 [5] Horgan C O, Polignone D A. Cavitation in nonlinearly elastic solids: a review[J]. Applied Mechanics Review, 1995, 48(7): 471-485. doi: 10.1115/1.3005108 [6] Knowles J K. Large amplitude oscillations of a tube of incompressible elastic material[J]. Q Appl Math, 1960, 18(1): 71-77. [7] 任九生. 周期载荷下超弹性圆柱壳的动力响应[J]. 应用数学和力学, 2008, 29(10): 1199–1207.(REN Jiu-sheng.Dynamical response of hyper-elastic cylindrical shells under periodic load[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(10): 1319-1327.) [8] YUAN Xue-gang, ZHANG Ruo-jing, ZHANG Hong-wu. Controllability conditions of finite oscillations of hyper-elastic cylindrical tubes composed of a class of ogden material models[J]. Computers, Materials & Continua, 2008, 7(3): 155-165. [9] Chou-Wang M-S, Horgan C O. Void nucleation and growth for a class of incompressible nonlinear elastic materials[J]. International Journal of Solids and Structures, 1989, 25(11): 1239-1254. doi: 10.1016/0020-7683(89)90088-7
计量
- 文章访问数: 1506
- HTML全文浏览量: 127
- PDF下载量: 826
- 被引次数: 0