留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔弹性层的刚性边界对扭转表面波传播的影响

S·古普塔 A·卡托帕德亚 D·K·玛里

S·古普塔, A·卡托帕德亚, D·K·玛里. 多孔弹性层的刚性边界对扭转表面波传播的影响[J]. 应用数学和力学, 2011, 32(3): 312-323. doi: 10.3879/j.issn.1000-0887.2011.03.007
引用本文: S·古普塔, A·卡托帕德亚, D·K·玛里. 多孔弹性层的刚性边界对扭转表面波传播的影响[J]. 应用数学和力学, 2011, 32(3): 312-323. doi: 10.3879/j.issn.1000-0887.2011.03.007
S. Gupta, A. Chattopadhyay, D. K. Majhi. Effect of Rigid Boundary on Propagation of Torsional Surface Waves in Porous Elastic Layer[J]. Applied Mathematics and Mechanics, 2011, 32(3): 312-323. doi: 10.3879/j.issn.1000-0887.2011.03.007
Citation: S. Gupta, A. Chattopadhyay, D. K. Majhi. Effect of Rigid Boundary on Propagation of Torsional Surface Waves in Porous Elastic Layer[J]. Applied Mathematics and Mechanics, 2011, 32(3): 312-323. doi: 10.3879/j.issn.1000-0887.2011.03.007

多孔弹性层的刚性边界对扭转表面波传播的影响

doi: 10.3879/j.issn.1000-0887.2011.03.007
基金项目: 印度新德里科学技术部基金的资助(SR/S4/ES-246/2006)
详细信息
  • 中图分类号: O33;O347.4+1

Effect of Rigid Boundary on Propagation of Torsional Surface Waves in Porous Elastic Layer

  • 摘要: 根据介质的力学性能,正如Cowin及Nunziato一样,导出多孔弹性层覆盖在多孔弹性半空间上时,研究其刚性边界对扭转表面波传播的影响.导出了速度方程并对其结果进行了讨论.发现介质中可能存在两类扭转表面波阵面,而Dey等(TamkangJournalofScienceandEngineering,2003,6(4):241-249.)给出的没有刚性边界面时,存在3类扭转表面波阵面.研究还揭示,多孔弹性层中Love波也可能随同扭转表面波一起存在.值得注意的是,刚性边界面多孔弹性层中Love波的相速度,不同于自由边界面多孔弹性层中的相速度.实际观察到扭转波的色散性,以及速度随着振荡频率的增大而减小.
  • [1] Ewing W M, Jardetzky W S,Press F. Elastic Waves in Layered Media[M]. New York: McGraw-Hill, 1957.
    [2] Dey S, Gupta A K, Gupta S. Torsional surface wave in nonhomogeneous and anisotropic medium[J]. Journal of Acoustical Society of America, 1996, 99(5): 2737-2741. doi: 10.1121/1.414815
    [3] Dey S, Dutta D. Torsional wave propagation in an initially stressed cylinder[J]. Proceedings of the Indian National Science Academy A, 1992, 58(5): 425-429.
    [4] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid—I low frequency range[J]. Journal of the Acoustical Society of America, 1956, 28(2): 168-178. doi: 10.1121/1.1908239
    [5] Biot M A, Willis D G. The Elastic coefficients of the theory of consolidation[J]. Journal of Applied Mechanics, 1957, 24:594-601.
    [6] Cowin S C, Nunziato J W. Linear elastic materials with voids[J]. Journal of Elasticity, 1983, 13(2): 125-147. doi: 10.1007/BF00041230
    [7] Goodman M A, Cowin S C. A continuum theory for granular materials[J]. Archive for Rational Mechanics and Analysis, 1972,44(4): 249-266.
    [8] Ciarletta M, Iesan D. Non-Classical Elastic Solids, Longman Scientific and Technical[M]. New York: Wiley, 1992.
    [9] Iesan D. Some theorems in the theory of elastic materials with voids[J]. Journal of Elasticity, 1985, 15(2): 215-224. doi: 10.1007/BF00041994
    [10] Nunziato J W, Cowin S C. A non-linear theory of elastic materials with voids[J]. Archive for Rational Mechanics and Analysis, 1979, 72(2): 175-201.
    [11] Puri P, Cowin S C. Plane waves in linear elastic materials with voids[J]. Journal of Elasticity, 1985, 15(2): 167-183. doi: 10.1007/BF00041991
    [12] Chandrasekharaiah D S. Effects of surface stresses and voids on Rayleigh waves in an elastic solid[J]. International Journal of Engineering Science, 1987, 25(2): 205-211. doi: 10.1016/0020-7225(87)90006-1
    [13] Parfitt V R, Eringen A C. Reflection of plane waves from flat boundary of a micropolar elastic half-space[J]. Journal of the Acoustical Society of America, 1969, 45(5): 1258-1272. doi: 10.1121/1.1911598
    [14] Tomar S K, Gogna M L. Reflection and refraction of coupled transverse and micro-rotational waves at an interface between two different micropolar elastic media in welded contact[J]. International Journal of Engineering Science, 1995, 33(4): 485-496. doi: 10.1016/0020-7225(94)00077-8
    [15] Singh B, Kumar R. Reflection and refraction of plane waves at an interface between micropolar elastic solid and viscoelastic solid[J]. International Journal of Engineering Science, 1998, 36(2): 119-135. doi: 10.1016/S0020-7225(97)00041-4
    [16] Midya G K. On Love-type surface waves in homogeneous micropolar elastic media[J]. International Journal of Engineering Science, 2004, 42(11/12): 1275-1288. doi: 10.1016/j.ijengsci.2004.03.002
    [17] Iesan D, Nappa L. Axially symmetric problems for a porous elastic solid[J]. International Journal of Solid and Structure, 2003, 40(20): 5271-5286. doi: 10.1016/S0020-7683(03)00229-4
    [18] Golamhossen F R. Propagation of waves in an elastic cylinder with voids[J]. Science and Technology, Research Journal,University of Mauritius, Réduit, Mauritius, 2000, 5: 43-52.
    [19] Wright T W. Elastic wave propagation through a material with voids[J]. Journal of Mechanics and Physics of Solids, 1998, 46(10): 2033-2047. doi: 10.1016/S0022-5096(98)00017-9
    [20] Dhaliwal R S, Wang J. Domain of influence theorem in the linear theory of elastic materials with voids[J]. International Journal of Engineering Science, 1994, 32(11): 1823-1828. doi: 10.1016/0020-7225(94)90111-2
    [21] Iesan D, Quintanilla R. Decay estimates and energy bounds for porous elastic cylinders[J]. Zeitschrift für Angewandte Mathematik und Physik, 1995,46(2): 268-281. doi: 10.1007/BF00944757
    [22] Quintanilla R. On uniqueness and continuous dependence in the nonlinear theory of mixtures of elastic solids with voids[J]. Mathematics and Mechanics of Solids, 2001, 6(3): 281-298. doi: 10.1177/108128650100600305
    [23] Dey S, Gupta S, Gupta A K. Torsional surface wave in an elastic half space with void pores[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17(3): 197-204. doi: 10.1002/nag.1610170305
    [24] Dey S, Gupta S, Gupta A K, Kar S K, De P K. Propagation of torsional surface waves in an elastic layer with void pores over an elastic half-space with void pores[J]. Tamkang Journal of Science and Engineering, 2003, 6(4): 241-249.
  • 加载中
计量
  • 文章访问数:  1582
  • HTML全文浏览量:  189
  • PDF下载量:  656
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-07
  • 修回日期:  2011-01-08
  • 刊出日期:  2011-03-15

目录

    /

    返回文章
    返回