留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流体流动中波状游动平板最优运动的数值方法

钱勤建 孙德军

钱勤建, 孙德军. 流体流动中波状游动平板最优运动的数值方法[J]. 应用数学和力学, 2011, 32(3): 324-332. doi: 10.3879/j.issn.1000-0887.2011.03.008
引用本文: 钱勤建, 孙德军. 流体流动中波状游动平板最优运动的数值方法[J]. 应用数学和力学, 2011, 32(3): 324-332. doi: 10.3879/j.issn.1000-0887.2011.03.008
QIAN Qin-jian, SUN De-jun. Numerical Method for Optimum Motion of Undulatory Swimming Plate in Fluid Flow[J]. Applied Mathematics and Mechanics, 2011, 32(3): 324-332. doi: 10.3879/j.issn.1000-0887.2011.03.008
Citation: QIAN Qin-jian, SUN De-jun. Numerical Method for Optimum Motion of Undulatory Swimming Plate in Fluid Flow[J]. Applied Mathematics and Mechanics, 2011, 32(3): 324-332. doi: 10.3879/j.issn.1000-0887.2011.03.008

流体流动中波状游动平板最优运动的数值方法

doi: 10.3879/j.issn.1000-0887.2011.03.008
详细信息
    作者简介:

    钱勤建(1981- ),男,浙江人,博士生(E-mail:qqj@mail.ustc.edu.cn);孙德军(1967- ),男,教授,博士,博士生导师(联系人.Tel:+86-551-3606797;E-mail:dsun@ustc.edu.cn).

  • 中图分类号: O352

Numerical Method for Optimum Motion of Undulatory Swimming Plate in Fluid Flow

  • 摘要: 提出了一种求解波状游动平板最优运动方式的优化方法.最优化问题表述为固定推力的条件下,使得输入功率最小.由于存在不可见模态,使得该问题具有奇性,用通常的Lagrange乘子法计算得到的可能不是最优解,而是一个鞍点值.为了消除这一奇性,增加了一个关于幅值的不等式约束,并利用逐步二次规划的优化方法求解该问题.将该方法运用到二维和三维的波动板的几个例子上,获得了最优解.
  • [1] Wu T Y. Swimming of a waving plate[J]. Journal of Fluid Mechanics, 1961, 10: 321-344. doi: 10.1017/S0022112061000949
    [2] Liu P, Bose N. Propulsive performance from oscillating propulsors with spanwise flexibility[J]. Proceeding of the Royal Society of London, 1997, 453 (1963):1763-1770. doi: 10.1098/rspa.1997.0095
    [3] Zhu Q, Wolfgang M J, Yue D K P, Triantafyllou M S. Three dimensional flow structures and vorticity control in fish-like swimming[J]. Journal of Fluid Mechanics, 2002, 468: 1-28.
    [4] DONG Gen-jin, LU Xi-yun. Numerical analysis on the propulsive performance and vortex shedding of fish-like traveling wavy plate[J]. International Journal for Numerical Methods in Fluids, 2005, 48:1351-1373. doi: 10.1002/fld.984
    [5] LU Xi-yun, YIN Xie-zhen. Propulsive performance of fish-like traveling wavy wall[J]. Acta Mechanica, 2005, 175:197-215. doi: 10.1007/s00707-004-0117-y
    [6] WU Chui-jie, WANG Liang. Where is the rudder of a fish?—the mechanism of swimming and control of self-propelled fish school[J]. Acta Mechanica Sinica, 2010, 26 (1):45-65. doi: 10.1007/s10409-009-0305-z
    [7] Lighthill M J. Mathematical Biofluiddynamics[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1975.
    [8] Lighthill M J. Note on the swimming of slender fish[J]. Journal of Fluid Mechanics, 1960, 9: 305-320. doi: 10.1017/S0022112060001110
    [9] Lighthill M J. Aquatic animal propulsion of high hydromechanical efficiency[J]. Journal of Fluid Mechanics, 1970, 44: 265-301. doi: 10.1017/S0022112070001830
    [10] Wu T Y. Hydromechanics of swimming propulsion. part 1: swimming of a two-dimensional flexible plate at variable forward speeds in an invisid fluid[J]. Journal of Fluid Mechanics, 1971, 46: 337-355. doi: 10.1017/S0022112071000570
    [11] Wu T Y. Hydromechanics of swimming propulsion. part 2: some optimum shape problems[J]. Journal of Fluid Mechanics, 1971, 46: 521-544. doi: 10.1017/S0022112071000685
    [12] CHENG Jian-yu, ZHUANG Li-xian, TONG Bing-gang. Analysis of swimming three-dimensional waving plates[J]. Journal of Fluid Mechanics, 1991, 232: 341-355. doi: 10.1017/S0022112091003713
    [13] Kagemoto H, Wolfgang M J, Yue D K P, Triantafyllou M S. Force and power estimation in fish-like locomotion using a vortex-lattice method[J]. Journal of Fluids Engineering, 2000, 122: 239-253. doi: 10.1115/1.483251
    [14] Lan C E. A Quasi-vortex-lattice method in thin wing theory[J]. Journal of Aircraft, 1974, 11(9): 518-527. doi: 10.2514/3.60381
    [15] Ahmadi A R, Widnall S E. Energetics and optimum motion of oscillating lifting surfaces of finite span[J]. Journal of Fluid Mechanics, 1986, 162:261-282. doi: 10.1017/S0022112086002045
    [16] Spellucci P. An SQP method for general nonlinear programs using only equality constrained subproblems[J]. Mathematical Programming, 1998, 82(3): 413-448.
    [17] Spellucci P. A new technique for inconsistent problems in the SQP method[J]. Mathematical Method of Operations Research, 1998, 47: 355-400. doi: 10.1007/BF01198402
  • 加载中
计量
  • 文章访问数:  1578
  • HTML全文浏览量:  137
  • PDF下载量:  877
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-20
  • 修回日期:  2011-01-19
  • 刊出日期:  2011-03-15

目录

    /

    返回文章
    返回