留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扩展型动网格的Chebyshev有限谱方法

詹杰民 李毓湘 董志

詹杰民, 李毓湘, 董志. 扩展型动网格的Chebyshev有限谱方法[J]. 应用数学和力学, 2011, 32(3): 365-374. doi: 10.3879/j.issn.1000-0887.2011.03.012
引用本文: 詹杰民, 李毓湘, 董志. 扩展型动网格的Chebyshev有限谱方法[J]. 应用数学和力学, 2011, 32(3): 365-374. doi: 10.3879/j.issn.1000-0887.2011.03.012
ZHAN Jie-min, LI Yok-sheung, DONG Zhi. Chebyshev Finite Spectral Method With Extended Moving Grids[J]. Applied Mathematics and Mechanics, 2011, 32(3): 365-374. doi: 10.3879/j.issn.1000-0887.2011.03.012
Citation: ZHAN Jie-min, LI Yok-sheung, DONG Zhi. Chebyshev Finite Spectral Method With Extended Moving Grids[J]. Applied Mathematics and Mechanics, 2011, 32(3): 365-374. doi: 10.3879/j.issn.1000-0887.2011.03.012

扩展型动网格的Chebyshev有限谱方法

doi: 10.3879/j.issn.1000-0887.2011.03.012
基金项目: 香港研究资助局基金资助项目(522007);国家海洋公益性行业科研专项基金资助项目(201005002)
详细信息
    作者简介:

    詹杰民(1963- ),男,广东人,教授,博士,博士生导师(联系人.Tel/Fax:+86-20-84111130;E-mail:stszjm@mail.sysu.edu.cn).

  • 中图分类号: O351.2;O24

Chebyshev Finite Spectral Method With Extended Moving Grids

  • 摘要: 给出了基于非均匀网格的Chebyshev有限谱方法.提出了可生成两种类型扩展型动网格的均布格式.一种类型的网格被用来提高波面附近的分辨率,另一种类型则用在梯度较大的流动区域.由于采用Chebyshev多项式作为基函数,该方法具有高阶精度.从上个时间步到当前时间步,两套不均匀网格间的物理量采用Chebyshev多项式插值.为使方法在时间离散方面保持高精度,采用了Adams-Bashforth预报格式和Adams-Moulton校正格式.为了避免由Korteweg-deVries(KdV)方程的弥散项引起的数值振荡,给出了一种非均匀网格下的数值稳定器.给出的方法与具有分析解的Burgers方程的非线性对流扩散问题和KdV方程的单孤独波和双孤独波传播问题进行了比较,结果非常吻合.
  • [1] Adjerid S,Flaherty J E. A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations[J]. SIAM Journal on Numerical Analysis, 1986, 23(4): 778-796. doi: 10.1137/0723050
    [2] Anderson D A. Equidistribution schemes, Poisson generators, and adaptive grids[J]. Applied Mathematics and Computation, 1987, 24(3): 211-227. doi: 10.1016/0096-3003(87)90085-3
    [3] Huang W Z, Ren Y H, Russell R D. Moving mesh methods based on moving mesh partial-differential equations[J]. Journal of Computational Physics, 1994, 113(2): 279-290. doi: 10.1006/jcph.1994.1135
    [4] Huang W Z, Russell R D. A moving collocation method for solving time dependent partial differential equations[J]. Applied Numerical Mathematics, 1996, 20(1/2): 101-116. doi: 10.1016/0168-9274(95)00119-0
    [5] Budd C J, Huang W H, Russell R D. Moving mesh methods for problems with blow-up[J]. SIAM Journal on Scientific Computing, 1996, 17(2): 305-327. doi: 10.1137/S1064827594272025
    [6] Huang W Z, Russell R D. Analysis of moving mesh partial differential equations with spatial smoothing[J]. SIAM Journal on Numerical Analysis, 1997, 34(3): 1106-1126. doi: 10.1137/S0036142993256441
    [7] Dorfi E A, Drury L O’C. Simple adaptive grids for 1-D initial value problems[J]. Journal of Computational Physics, 1987, 69(1): 175-195. doi: 10.1016/0021-9991(87)90161-6
    [8] Beckett G, Mackenzie J A, Ramage A, Sloan D M. On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution[J]. Journal of Computational Physics, 2001, 167(2): 372-392. doi: 10.1006/jcph.2000.6679
    [9] Cao W M, Huang W Z, Russell R D. A moving mesh method based on the geometric conservation law[J]. SIAM Journal on Scientific Computing, 2002, 24(1): 118-142. doi: 10.1137/S1064827501384925
    [10] Tang H Z. A moving mesh method for the Euler flow calculations using a directional monitor function[J]. Communications in Computational Physics, 2006, 1(4): 656-676.
    [11] Soheili A R, Stockie J M. A moving mesh method with variable mesh relaxation time[J]. Applied Numerical Mathematics, 2008, 58(3): 249-263. doi: 10.1016/j.apnum.2006.11.014
    [12] Tan Z, Lim K M, Khoo B C. An adaptive moving mesh method for two-dimensional incompressible viscous flows[J]. Communications in Computational Physics, 2008, 3(3): 679-703.
    [13] Li R, Tang T, Zhang P W. Moving mesh methods in multiple dimensions based on harmonic maps[J]. Journal of Computational Physics, 2001,170(2): 562-588. doi: 10.1006/jcph.2001.6749
    [14] Patera A T. A spectral element method for fluid-dynamics - laminar-flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54(3): 468-488. doi: 10.1016/0021-9991(84)90128-1
    [15] Ghaddar N K, Karniadakis G E, Patera A T. A conservative isoparametric spectral element method for forced convection: application to fully developed flow in periodic geometries[J]. Num Heat Transfer, 1986, 9(3):277-300.
    [16] Giraldo F X. Strong and weak Lagrange-Galerkin spectral element methods for the shallow water equations[J]. Computers and Mathematics With Applications, 2003, 45(1/3): 97-121. doi: 10.1016/S0898-1221(03)80010-X
    [17] Liu Y, Vinokur M, Wang Z J. Spectral difference method for unstructured grids I: basic formulation[J]. J Computational Physics, 2006, 216(2): 780-801. doi: 10.1016/j.jcp.2006.01.024
    [18] Liang C, Kannan R, Wang Z J. A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured triangular grids[J]. Computers and Fluids, 2009, 38(2): 254-265. doi: 10.1016/j.compfluid.2008.02.004
    [19] Kopriva D A. A conservative staggered-grid Chebyshev multidomain method for compressible flows: Ⅱ semi-structured method[J]. J Comput Phys, 1996, 128(2):475-488. doi: 10.1006/jcph.1996.0225
    [20] Kopriva D A. A staggered-grid multi-domain spectral method for the Euler and Navier-Stokes equations on unstructured grids[J]. J Comput Phys, 1998, 143(1):125-158. doi: 10.1006/jcph.1998.5956
    [21] Wang J P. Non-periodic fourier tansform and finite spectral method[C]Sixth Inter Symposium in CFD. Nevada, USA, 1995: 1339-1344.
    [22] Wang J P. Finite spectral method based on non-periodic Fourier transform[J]. Computers & Fluids, 1998, 27(5/6): 639-644.
    [23] 詹杰民, 李毓湘. 一维Burgers方程和KdV方程的广义有限谱方法[J]. 应用数学和力学, 2006, 27(12):1431-1439.(ZHAN Jie-min, LI Yok-sheung. Generalized finite spectral method for 1D Burgers and KdV equations[J]. Applied Mathematics and Mechanics(English Edition), 2006, 27(12): 1635-1643.)
    [24] Li Y S, Zhan J M. Chebyshev finite-spectral method for 1D Boussinesq-type equations[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2006, 132(3): 212-223. doi: 10.1061/(ASCE)0733-950X(2006)132:3(212)
    [25] 詹杰民, 林东, 李毓湘. 线性与非线性波的Chebyshev广义有限谱模拟[J]. 物理学报, 2007, 56(7): 3649-3654.(ZHAN Jie-min, LIN Dong, LI Yok-sheung. Chebyshev generalized finite spectral method for linear and nonlinear waves[J]. Acta Physica Sinica, 2007, 56(7): 3649-3654. (in Chinese))
    [26] Price T E. Pointwise error estimates for interpolation[J]. Journal of Computational and Applied Mathematics, 1987, 19(3): 389-393. doi: 10.1016/0377-0427(87)90207-X
    [27] Su C H, Gardner C S. Derivation of the Korteweg-de Vries and Burgers-equation[J]. J Math Phys, 1969, 10(3):536-539. doi: 10.1063/1.1664873
    [28] Li Y S, Zhan J M. Boussinesq-type model with boundary-fitted coordinate system[J]. Journal of Waterway Port Coastal and Ocean Engineering, ASCE, 2001, 127 (3):152-160. doi: 10.1061/(ASCE)0733-950X(2001)127:3(152)
    [29] Beji S, Nadaoka K. A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth[J]. Ocean Engineering, 1996, 23(8): 691-704. doi: 10.1016/0029-8018(96)84408-8
    [30] Press W H, Flannery B P, Teukolsky S A, Vetterling W T. Numerical Recipes[M]. New York: Cambridge University Press, 1989: 569-572.
    [31] Wei G, Kirby J T. Time-dependent numerical code for extended Boussinesq equations[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE,1995, 121(5): 251-260. doi: 10.1061/(ASCE)0733-950X(1995)121:5(251)
    [32] Kaya D. An application of the decomposition method for the KdVB equation[J]. Applied Mathematics and Computation, 2004, 152(1): 279-288. doi: 10.1016/S0096-3003(03)00566-6
    [33] Dodd R K, Eilbeck J C, Gibbon J D, Morris H C. Solitons and Nonlinear Wave Equations[M]. New York: Academic Press, 1984.
    [34] Li P W. On the numerical study of the KdV equation by the semi-implicit and leap-frog method[J]. Computer Physics Communications, 1995, 88(2/3): 121-127. doi: 10.1016/0010-4655(95)00060-S
  • 加载中
计量
  • 文章访问数:  1735
  • HTML全文浏览量:  174
  • PDF下载量:  724
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-25
  • 修回日期:  1900-12-30
  • 刊出日期:  2011-03-15

目录

    /

    返回文章
    返回