[1] |
Adjerid S,Flaherty J E. A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations[J]. SIAM Journal on Numerical Analysis, 1986, 23(4): 778-796. doi: 10.1137/0723050
|
[2] |
Anderson D A. Equidistribution schemes, Poisson generators, and adaptive grids[J]. Applied Mathematics and Computation, 1987, 24(3): 211-227. doi: 10.1016/0096-3003(87)90085-3
|
[3] |
Huang W Z, Ren Y H, Russell R D. Moving mesh methods based on moving mesh partial-differential equations[J]. Journal of Computational Physics, 1994, 113(2): 279-290. doi: 10.1006/jcph.1994.1135
|
[4] |
Huang W Z, Russell R D. A moving collocation method for solving time dependent partial differential equations[J]. Applied Numerical Mathematics, 1996, 20(1/2): 101-116. doi: 10.1016/0168-9274(95)00119-0
|
[5] |
Budd C J, Huang W H, Russell R D. Moving mesh methods for problems with blow-up[J]. SIAM Journal on Scientific Computing, 1996, 17(2): 305-327. doi: 10.1137/S1064827594272025
|
[6] |
Huang W Z, Russell R D. Analysis of moving mesh partial differential equations with spatial smoothing[J]. SIAM Journal on Numerical Analysis, 1997, 34(3): 1106-1126. doi: 10.1137/S0036142993256441
|
[7] |
Dorfi E A, Drury L O’C. Simple adaptive grids for 1-D initial value problems[J]. Journal of Computational Physics, 1987, 69(1): 175-195. doi: 10.1016/0021-9991(87)90161-6
|
[8] |
Beckett G, Mackenzie J A, Ramage A, Sloan D M. On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution[J]. Journal of Computational Physics, 2001, 167(2): 372-392. doi: 10.1006/jcph.2000.6679
|
[9] |
Cao W M, Huang W Z, Russell R D. A moving mesh method based on the geometric conservation law[J]. SIAM Journal on Scientific Computing, 2002, 24(1): 118-142. doi: 10.1137/S1064827501384925
|
[10] |
Tang H Z. A moving mesh method for the Euler flow calculations using a directional monitor function[J]. Communications in Computational Physics, 2006, 1(4): 656-676.
|
[11] |
Soheili A R, Stockie J M. A moving mesh method with variable mesh relaxation time[J]. Applied Numerical Mathematics, 2008, 58(3): 249-263. doi: 10.1016/j.apnum.2006.11.014
|
[12] |
Tan Z, Lim K M, Khoo B C. An adaptive moving mesh method for two-dimensional incompressible viscous flows[J]. Communications in Computational Physics, 2008, 3(3): 679-703.
|
[13] |
Li R, Tang T, Zhang P W. Moving mesh methods in multiple dimensions based on harmonic maps[J]. Journal of Computational Physics, 2001,170(2): 562-588. doi: 10.1006/jcph.2001.6749
|
[14] |
Patera A T. A spectral element method for fluid-dynamics - laminar-flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54(3): 468-488. doi: 10.1016/0021-9991(84)90128-1
|
[15] |
Ghaddar N K, Karniadakis G E, Patera A T. A conservative isoparametric spectral element method for forced convection: application to fully developed flow in periodic geometries[J]. Num Heat Transfer, 1986, 9(3):277-300.
|
[16] |
Giraldo F X. Strong and weak Lagrange-Galerkin spectral element methods for the shallow water equations[J]. Computers and Mathematics With Applications, 2003, 45(1/3): 97-121. doi: 10.1016/S0898-1221(03)80010-X
|
[17] |
Liu Y, Vinokur M, Wang Z J. Spectral difference method for unstructured grids I: basic formulation[J]. J Computational Physics, 2006, 216(2): 780-801. doi: 10.1016/j.jcp.2006.01.024
|
[18] |
Liang C, Kannan R, Wang Z J. A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured triangular grids[J]. Computers and Fluids, 2009, 38(2): 254-265. doi: 10.1016/j.compfluid.2008.02.004
|
[19] |
Kopriva D A. A conservative staggered-grid Chebyshev multidomain method for compressible flows: Ⅱ semi-structured method[J]. J Comput Phys, 1996, 128(2):475-488. doi: 10.1006/jcph.1996.0225
|
[20] |
Kopriva D A. A staggered-grid multi-domain spectral method for the Euler and Navier-Stokes equations on unstructured grids[J]. J Comput Phys, 1998, 143(1):125-158. doi: 10.1006/jcph.1998.5956
|
[21] |
Wang J P. Non-periodic fourier tansform and finite spectral method[C]Sixth Inter Symposium in CFD. Nevada, USA, 1995: 1339-1344.
|
[22] |
Wang J P. Finite spectral method based on non-periodic Fourier transform[J]. Computers & Fluids, 1998, 27(5/6): 639-644.
|
[23] |
詹杰民, 李毓湘. 一维Burgers方程和KdV方程的广义有限谱方法[J]. 应用数学和力学, 2006, 27(12):1431-1439.(ZHAN Jie-min, LI Yok-sheung. Generalized finite spectral method for 1D Burgers and KdV equations[J]. Applied Mathematics and Mechanics(English Edition), 2006, 27(12): 1635-1643.)
|
[24] |
Li Y S, Zhan J M. Chebyshev finite-spectral method for 1D Boussinesq-type equations[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2006, 132(3): 212-223. doi: 10.1061/(ASCE)0733-950X(2006)132:3(212)
|
[25] |
詹杰民, 林东, 李毓湘. 线性与非线性波的Chebyshev广义有限谱模拟[J]. 物理学报, 2007, 56(7): 3649-3654.(ZHAN Jie-min, LIN Dong, LI Yok-sheung. Chebyshev generalized finite spectral method for linear and nonlinear waves[J]. Acta Physica Sinica, 2007, 56(7): 3649-3654. (in Chinese))
|
[26] |
Price T E. Pointwise error estimates for interpolation[J]. Journal of Computational and Applied Mathematics, 1987, 19(3): 389-393. doi: 10.1016/0377-0427(87)90207-X
|
[27] |
Su C H, Gardner C S. Derivation of the Korteweg-de Vries and Burgers-equation[J]. J Math Phys, 1969, 10(3):536-539. doi: 10.1063/1.1664873
|
[28] |
Li Y S, Zhan J M. Boussinesq-type model with boundary-fitted coordinate system[J]. Journal of Waterway Port Coastal and Ocean Engineering, ASCE, 2001, 127 (3):152-160. doi: 10.1061/(ASCE)0733-950X(2001)127:3(152)
|
[29] |
Beji S, Nadaoka K. A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth[J]. Ocean Engineering, 1996, 23(8): 691-704. doi: 10.1016/0029-8018(96)84408-8
|
[30] |
Press W H, Flannery B P, Teukolsky S A, Vetterling W T. Numerical Recipes[M]. New York: Cambridge University Press, 1989: 569-572.
|
[31] |
Wei G, Kirby J T. Time-dependent numerical code for extended Boussinesq equations[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE,1995, 121(5): 251-260. doi: 10.1061/(ASCE)0733-950X(1995)121:5(251)
|
[32] |
Kaya D. An application of the decomposition method for the KdVB equation[J]. Applied Mathematics and Computation, 2004, 152(1): 279-288. doi: 10.1016/S0096-3003(03)00566-6
|
[33] |
Dodd R K, Eilbeck J C, Gibbon J D, Morris H C. Solitons and Nonlinear Wave Equations[M]. New York: Academic Press, 1984.
|
[34] |
Li P W. On the numerical study of the KdV equation by the semi-implicit and leap-frog method[J]. Computer Physics Communications, 1995, 88(2/3): 121-127. doi: 10.1016/0010-4655(95)00060-S
|