[1] |
Sutton G W, Sherman A. Engineering Magnetohydrodynamics[M]. New York: McGraw-Hill, 1965.
|
[2] |
Hayat T, Javedb T, Sajid M. Analytic solution for MHD rotating flow of a second grade fluid over a shrinking surface[J]. Physics Letters A, 2008, 372(18): 3264-3273. doi: 10.1016/j.physleta.2008.01.069
|
[3] |
朱婧, 郑连存, 郑志刚. 幂律速度运动表面上磁流体在驻点附近的滑移流动. 应用数学和力学, 2010, 31(4): 411-419. (ZHU Jing, ZHENG Lian-cun, ZHENG Zhi-gang. Effects of slip condition on MHD stagnation-point flow over a power-law stretching sheet[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(4): 439-448.)
|
[4] |
Abel M S, Nandeppanavar M M. Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-uniform heat source/sink[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2120-2131. doi: 10.1016/j.cnsns.2008.06.004
|
[5] |
Ishak A, Nazar R, Pop I. MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(1): 109-118. doi: 10.1016/j.cnsns.2007.07.011
|
[6] |
Prasad K V, Pal D, Datti P S. MHD power-law fluid flow and heat transfer over a non-isothermal stretching sheet[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2178-2189. doi: 10.1016/j.cnsns.2008.06.021
|
[7] |
Soundalgekar V M, Takhar H S, Singh M. Velocity and temperature field in MHD Falkner-Skan flow[J]. Journal of the Physical Society of Japan, 1981, 50(9): 3139-3143. doi: 10.1143/JPSJ.50.3139
|
[8] |
Abbasbandy S, Hayat T. Solution of the MHD Falkner-Skan flow by Hankel-Padé method[J]. Physics Letters A, 2009, 373(7): 731-734. doi: 10.1016/j.physleta.2008.12.045
|
[9] |
Abbasbandy S, Hayat T. Solution of the MHD Falkner-Skan flow by homotopy analysis method[J]. Commun Nonlinear Sci Numer Simulat, 2009, 14(9/10): 3591-3598. doi: 10.1016/j.cnsns.2009.01.030
|
[10] |
Parand K, Rezaei A R, Ghaderi S M. An approximate solution of the MHD Falkner-Skan flow by Hermite functions pseudospectral method[J]. Commun Nonlinear Sci Numer Simulat, 2011, 16(1): 274-283. doi: 10.1016/j.cnsns.2010.03.022
|
[11] |
Robert A V G, Vajravelu K. Existence and uniqueness results for a nonlinear differential equation arising in MHD Falkner-Skan flow[J]. Commun Nonlinear Sci Numer Simulat, 2010, 15(9): 2272-2277. doi: 10.1016/j.cnsns.2009.09.014
|
[12] |
赵家奎. 微分变换及其在电路中的应用[M]. 武汉: 华中理工大学出版社, 1988. (ZHAO Jia-kui. Differential Transformation and Its Applications for Electrical Circuits[M]. Wuhan: Huazhong University Press, 1986.(in Chinese))
|
[13] |
Chen C K, Ho S H. Solving partial differential equations by two dimensional differential transform method[J]. Applied Mathematics and Computation, 1999, 106(2): 171-179. doi: 10.1016/S0096-3003(98)10115-7
|
[14] |
Ayaz F. Solutions of the systems of differential equations by differential transform method[J]. Applied Mathematics and Computation, 2004, 147(2): 547-567. doi: 10.1016/S0096-3003(02)00794-4
|
[15] |
Arikoglu A I. Solution of boundary value problems for integro-differential equations by using differential transform method[J]. Applied Mathematics and Computation, 2005, 168(2): 1145-1158. doi: 10.1016/j.amc.2004.10.009
|
[16] |
Liu H, Song Y. Differential transform method applied to high index differential-algebraic equations[J]. Applied Mathematics and Computation, 2007, 184(2): 748-753. doi: 10.1016/j.amc.2006.05.173
|
[17] |
Abdel-Halim Hassan I H. Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems[J]. Chaos, Solitons & Fractals, 2008, 36(1): 53-65.
|
[18] |
Chang S H, Chang I L. A new algorithm for calculating two-dimensional differential transform of nonlinear functions[J]. Applied Mathematics and Computation, 2009, 215(7): 2486-2494. doi: 10.1016/j.amc.2009.08.046
|
[19] |
Boyd J. Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain[J]. Computers in Physics, 1997, 11(3): 299-303. doi: 10.1063/1.168606
|
[20] |
Rashidi M M. The modified differential transform method for solving MHD boundary-layer equations[J]. Computer Physics Communications, 2009, 180(11): 2210-2217. doi: 10.1016/j.cpc.2009.06.029
|
[21] |
Wazwaz A M. The modified decomposition method and Padé approximants for a boundary layer equation in unbounded domain[J]. Applied Mathematics and Computation, 2006, 177(2): 737-744. doi: 10.1016/j.amc.2005.09.102
|
[22] |
Baker G A. Essentials of Padé Approximants[M]. London: Academic Press, 1975.
|
[23] |
Asaithambi N S. A numerical method for the solution of the Falkner-Skan equation[J]. Applied Mathematics and Computation, 1997, 81(2/3): 259-264. doi: 10.1016/S0096-3003(95)00325-8
|