留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可渗透壁面上Falkner-Skan磁流体动力学流动的近似解

苏晓红 郑连存

苏晓红, 郑连存. 可渗透壁面上Falkner-Skan磁流体动力学流动的近似解[J]. 应用数学和力学, 2011, 32(4): 383-390. doi: 10.3879/j.issn.1000-0887.2011.04.002
引用本文: 苏晓红, 郑连存. 可渗透壁面上Falkner-Skan磁流体动力学流动的近似解[J]. 应用数学和力学, 2011, 32(4): 383-390. doi: 10.3879/j.issn.1000-0887.2011.04.002
SU Xiao-hong, ZHENG Lian-cun. Approximate Solutions to the MHD Falkner-Skan Flow Over a Permeable Wall[J]. Applied Mathematics and Mechanics, 2011, 32(4): 383-390. doi: 10.3879/j.issn.1000-0887.2011.04.002
Citation: SU Xiao-hong, ZHENG Lian-cun. Approximate Solutions to the MHD Falkner-Skan Flow Over a Permeable Wall[J]. Applied Mathematics and Mechanics, 2011, 32(4): 383-390. doi: 10.3879/j.issn.1000-0887.2011.04.002

可渗透壁面上Falkner-Skan磁流体动力学流动的近似解

doi: 10.3879/j.issn.1000-0887.2011.04.002
基金项目: 国家自然科学基金资助项目(50936003;51076012)
详细信息
    作者简介:

    苏晓红(1976- ),男,湖北人,博士生(E-mail:suxh2005@163.com);郑连存(1957- ),教授,博士生导师(联系人.Tel:+86-10-62332891;E-mail:liancunzheng@163.com).

  • 中图分类号: O357;O175

Approximate Solutions to the MHD Falkner-Skan Flow Over a Permeable Wall

  • 摘要: 研究了可渗透壁面上Falkner-Skan磁流体动力学(MHD)边界层流动问题.利用结合了微分变换法(DTM)和Padé近似的DTM-Padé方法,得到了边界层问题的近似解和壁摩擦因数值.通过建立一个迭代程序,边界层问题的近似解被表示为幂级数的形式,而且以图和表形式对不同参数下的近似解结果与打靶法得到的数值结果进行了对比,近似解和数值解结果高度吻合,从而验证了所得问题近似解和结论的可靠性和有效性.并且,对求得的边界层问题近似解结果进行了讨论,分析了不同物理参数对边界层流动的影响.
  • [1] Sutton G W, Sherman A. Engineering Magnetohydrodynamics[M]. New York: McGraw-Hill, 1965.
    [2] Hayat T, Javedb T, Sajid M. Analytic solution for MHD rotating flow of a second grade fluid over a shrinking surface[J]. Physics Letters A, 2008, 372(18): 3264-3273. doi: 10.1016/j.physleta.2008.01.069
    [3] 朱婧, 郑连存, 郑志刚. 幂律速度运动表面上磁流体在驻点附近的滑移流动. 应用数学和力学, 2010, 31(4): 411-419. (ZHU Jing, ZHENG Lian-cun, ZHENG Zhi-gang. Effects of slip condition on MHD stagnation-point flow over a power-law stretching sheet[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(4): 439-448.)
    [4] Abel M S, Nandeppanavar M M. Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-uniform heat source/sink[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2120-2131. doi: 10.1016/j.cnsns.2008.06.004
    [5] Ishak A, Nazar R, Pop I. MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(1): 109-118. doi: 10.1016/j.cnsns.2007.07.011
    [6] Prasad K V, Pal D, Datti P S. MHD power-law fluid flow and heat transfer over a non-isothermal stretching sheet[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2178-2189. doi: 10.1016/j.cnsns.2008.06.021
    [7] Soundalgekar V M, Takhar H S, Singh M. Velocity and temperature field in MHD Falkner-Skan flow[J]. Journal of the Physical Society of Japan, 1981, 50(9): 3139-3143. doi: 10.1143/JPSJ.50.3139
    [8] Abbasbandy S, Hayat T. Solution of the MHD Falkner-Skan flow by Hankel-Padé method[J]. Physics Letters A, 2009, 373(7): 731-734. doi: 10.1016/j.physleta.2008.12.045
    [9] Abbasbandy S, Hayat T. Solution of the MHD Falkner-Skan flow by homotopy analysis method[J]. Commun Nonlinear Sci Numer Simulat, 2009, 14(9/10): 3591-3598. doi: 10.1016/j.cnsns.2009.01.030
    [10] Parand K, Rezaei A R, Ghaderi S M. An approximate solution of the MHD Falkner-Skan flow by Hermite functions pseudospectral method[J]. Commun Nonlinear Sci Numer Simulat, 2011, 16(1): 274-283. doi: 10.1016/j.cnsns.2010.03.022
    [11] Robert A V G, Vajravelu K. Existence and uniqueness results for a nonlinear differential equation arising in MHD Falkner-Skan flow[J]. Commun Nonlinear Sci Numer Simulat, 2010, 15(9): 2272-2277. doi: 10.1016/j.cnsns.2009.09.014
    [12] 赵家奎. 微分变换及其在电路中的应用[M]. 武汉: 华中理工大学出版社, 1988. (ZHAO Jia-kui. Differential Transformation and Its Applications for Electrical Circuits[M]. Wuhan: Huazhong University Press, 1986.(in Chinese))
    [13] Chen C K, Ho S H. Solving partial differential equations by two dimensional differential transform method[J]. Applied Mathematics and Computation, 1999, 106(2): 171-179. doi: 10.1016/S0096-3003(98)10115-7
    [14] Ayaz F. Solutions of the systems of differential equations by differential transform method[J]. Applied Mathematics and Computation, 2004, 147(2): 547-567. doi: 10.1016/S0096-3003(02)00794-4
    [15] Arikoglu A I. Solution of boundary value problems for integro-differential equations by using differential transform method[J]. Applied Mathematics and Computation, 2005, 168(2): 1145-1158. doi: 10.1016/j.amc.2004.10.009
    [16] Liu H, Song Y. Differential transform method applied to high index differential-algebraic equations[J]. Applied Mathematics and Computation, 2007, 184(2): 748-753. doi: 10.1016/j.amc.2006.05.173
    [17] Abdel-Halim Hassan I H. Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems[J]. Chaos, Solitons & Fractals, 2008, 36(1): 53-65.
    [18] Chang S H, Chang I L. A new algorithm for calculating two-dimensional differential transform of nonlinear functions[J]. Applied Mathematics and Computation, 2009, 215(7): 2486-2494. doi: 10.1016/j.amc.2009.08.046
    [19] Boyd J. Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain[J]. Computers in Physics, 1997, 11(3): 299-303. doi: 10.1063/1.168606
    [20] Rashidi M M. The modified differential transform method for solving MHD boundary-layer equations[J]. Computer Physics Communications, 2009, 180(11): 2210-2217. doi: 10.1016/j.cpc.2009.06.029
    [21] Wazwaz A M. The modified decomposition method and Padé approximants for a boundary layer equation in unbounded domain[J]. Applied Mathematics and Computation, 2006, 177(2): 737-744. doi: 10.1016/j.amc.2005.09.102
    [22] Baker G A. Essentials of Padé Approximants[M]. London: Academic Press, 1975.
    [23] Asaithambi N S. A numerical method for the solution of the Falkner-Skan equation[J]. Applied Mathematics and Computation, 1997, 81(2/3): 259-264. doi: 10.1016/S0096-3003(95)00325-8
  • 加载中
计量
  • 文章访问数:  1764
  • HTML全文浏览量:  167
  • PDF下载量:  946
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-24
  • 修回日期:  2011-02-14
  • 刊出日期:  2011-04-15

目录

    /

    返回文章
    返回