[1] |
Alizadeh F, Goldfarb D. Second-order cone programming[J]. Mathematical Programming Ser B, 2003,95(1 ):3-51. doi: 10.1007/s10107-002-0339-5
|
[2] |
Witzgall C. Optimal location of a central facility, mathematical models and concepts[R]. Technical Report 8388, National Bureau of Standards,Washington, DC, 1964.
|
[3] |
Lobo M S, Vandenberghe L, Boyd S, Lebret H. Applications of second-order cone programming[J].Linear Algebra and Its Applications, 1998, 284(1/3): 193-228. doi: 10.1016/S0024-3795(98)10032-0
|
[4] |
Kanno Y, Ohsaki M, Ito J. Large-deformation and friction analysis of non-linear elastic cable networks by second-order cone programming[J].International Journal for Numerical Methods in Engineering,2002, 55(9):1079-1114. doi: 10.1002/nme.537
|
[5] |
Makrodimopoulos A, Martin C M. Lower bound limit analysis of cohesive-frictional materials using second-order cone programming[J].International Journal for Numerical Methods in Engineering,2006, 66(4):604-634. doi: 10.1002/nme.1567
|
[6] |
Nemirovskii A, Scheinberg K. Extension of Karmarkar’s algorithm onto convex quadratically constrained quadratic problems[J]. Mathematical Programming, 1996,72(3):273-289.
|
[7] |
Nesterov Y E, Todd M J. Self-scaled barriers and interior-point methods for convex programming[J]. Mathematics of Operations Research, 1997, 22(1):1-42. doi: 10.1287/moor.22.1.1
|
[8] |
Nesterov Y E, Todd M J. Primal-dual interior-point methods for self-scaled cones[J]. SIAM Journal on Optimization, 1998, 8(2): 324-364. doi: 10.1137/S1052623495290209
|
[9] |
Adler I, Alizadeh F. Primal-dual interior-point algorithms for convex quadratically constrained and semidefinite optimization problems[R]. Technical Report RRR 46-95, RUTCOR, Rutgers University, 1995.
|
[10] |
Alizadeh F, Haeberly J P A, Overton M L. Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results[J]. SIAM Journal on Optimization, 1998, 8(3): 746-768. doi: 10.1137/S1052623496304700
|
[11] |
Monteiro R D C, Tsuchiya T. Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions[J].Mathematical Programming Ser A, 2000, 88(1):61-83. doi: 10.1007/PL00011378
|
[12] |
Chi X N, Liu S Y. An infeasible-interior-point predictor-corrector algorithm for the second-order cone program[J]. Acta Mathematica Scientia B, 2008, 28(3): 551-559. doi: 10.1016/S0252-9602(08)60058-2
|
[13] |
Mizuno S, Todd M J, Ye Y. On adaptive-step primal-dual interior-point algorithms for linear programming[J]. Mathematics of Operations Research, 1993, 18(4): 964-981. doi: 10.1287/moor.18.4.964
|
[14] |
Miao J M. Two infeasible interior-point predictor-corrector algorithms for linear programming[J]. SIAM Journal on Optimization, 1996, 6(3): 587-599. doi: 10.1137/S105262349325771X
|
[15] |
Zhang Y. On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem[J]. SIAM Journal on Optimization, 1994, 4(1): 208-227. doi: 10.1137/0804012
|
[16] |
Kojima M. Basic lemmas in polynomial-time infeasible-interior point methods for linear programs[J]. Annals of Operations Research, 1996, 62(1):1-28. doi: 10.1007/BF02206809
|
[17] |
Bai Y Q, Wang G Q, Roos C. Primal-dual interior-point algorithms for second-order cone optimization based on kernel functions[J]. Nonlinear Analysis, 2009, 70(10): 3584-3602. doi: 10.1016/j.na.2008.07.016
|
[18] |
Pataki G, Schmieta S. The DIMACS library of semidefinite-quadratic-linear programs[R]. Technical report. Computational Optimization Research Center, Columbia University, 2002.
|
[19] |
Pan Sh H, Chen J Sh. A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions[J]. Computational Optimization and Applications, 2010, 45(1):59-88. doi: 10.1007/s10589-008-9166-9
|