留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲率的形状梯度和经典梯度:微纳米曲面上的驱动力

殷雅俊 陈超 吕存景 郑泉水

殷雅俊, 陈超, 吕存景, 郑泉水. 曲率的形状梯度和经典梯度:微纳米曲面上的驱动力[J]. 应用数学和力学, 2011, 32(5): 509-521. doi: 10.3879/j.issn.1000-0887.2011.05.001
引用本文: 殷雅俊, 陈超, 吕存景, 郑泉水. 曲率的形状梯度和经典梯度:微纳米曲面上的驱动力[J]. 应用数学和力学, 2011, 32(5): 509-521. doi: 10.3879/j.issn.1000-0887.2011.05.001
YIN Ya-jun, CHEN Chao, LV Cun-jing, ZHENG Quan-shui. Shape Gradient and Classical Gradient of Curvatures: Driving Forces on Micro/Nano Curved Surfaces[J]. Applied Mathematics and Mechanics, 2011, 32(5): 509-521. doi: 10.3879/j.issn.1000-0887.2011.05.001
Citation: YIN Ya-jun, CHEN Chao, LV Cun-jing, ZHENG Quan-shui. Shape Gradient and Classical Gradient of Curvatures: Driving Forces on Micro/Nano Curved Surfaces[J]. Applied Mathematics and Mechanics, 2011, 32(5): 509-521. doi: 10.3879/j.issn.1000-0887.2011.05.001

曲率的形状梯度和经典梯度:微纳米曲面上的驱动力

doi: 10.3879/j.issn.1000-0887.2011.05.001
基金项目: 国家自然科学基金资助项目(10872114;10672089;10832005;11072125)
详细信息
    作者简介:

    殷雅俊(1964- ),男,河南人,教授,博士,博士生导师(联系人.Tel:+86-10-62795536;E-mail:yinyj@mail.tsinghua.edu.cn).

  • 中图分类号: O302;O34;O484.2

Shape Gradient and Classical Gradient of Curvatures: Driving Forces on Micro/Nano Curved Surfaces

  • 摘要: 近期的实验和分子动力学模拟均表明:圆锥面上粘附液滴能自发地定向运动,且自发定向运动的方向与粘附面的亲水、疏水性质无关.针对这一重要现象,拟从曲面微纳米力学几何化的角度,提供一般性的理论解释.借助于粒子对势,研究了孤立粒子与微纳米硬曲面之间的相互作用,分析了粒子/硬曲面相互作用的几何学基础.可以证实:(a) 粒子/硬曲面的作用势均具有统一的曲率化形式,均可以统一地表达成曲面平均曲率和Gauss曲率的函数;(b) 基于曲率化的作用势,能够实现曲面微纳米力学的几何化;(c) 曲率与曲率的内蕴梯度构成卷曲空间上的驱动力;(d) 驱动力方向与曲面的亲水、疏水性质无关,解释了自发定向运动实验.
  • [1] 陈超.水在碳纳米曲面上的湿润和滑移性质的研究[D].清华大学硕士论文. 北京:清华大学, 2010.(CHEN Chao. Study on the wetting and slippy property of water on carbon nano surface[D].M Sc dissertation, Beijing: Tsinghua University, 2010.)
    [2] LV Cun-jing, CHEN Chao, YIN Ya-jun, ZHENG Quan-shui. Surface curvature-induced directional movement of water droplets[J].arXiv: 1011.3689v1, doi: 10.
    [3] YIN Ya-jun, WU Ji-ye. Shaper gradient: a driving force induced by space curvatures[J]. International Journal of Nonlinear Sciences and Numerical Simulations, 2010, 11(4): 259-267.
    [4] 殷雅俊.生物膜力学与几何中的对称[J].力学与实践, 2008, 30(2): 1-10.(YIN Ya-jun. Symmetries in the mechanics and geometry for biomembranes[J]. Mechanics in Engineering, 2008, 30(2): 1-10.(in Chinese))
    [5] YIN Ya-jun, CHEN Yan-qiu, NI Dong, SHI Hui-ji, FAN Qin-shan. Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes[J]. Journal of Biomechanics, 2005, 38(7): 1433-1440. doi: 10.1016/j.jbiomech.2004.06.024
    [6] YIN Ya-jun, YIN Jie, LV Cun-jing. Equilibrium theory in 2D Riemann manifold for heterogeneous biomembranes with arbitrary variational modes[J]. Journal of Geometry and Physics, 2008, 58(1): 122-132. doi: 10.1016/j.geomphys.2007.10.001
    [7] YIN Ya-jun, YIN Jie, NI Dong. General mathematical frame for open or closed biomembranes(part Ⅰ): equilibrium theory and geometrically constraint equation[J]. Journal of Mathematical Biology, 2005, 51(4): 403-413. doi: 10.1007/s00285-005-0330-x
    [8] YIN Ya-jun, LV Cun-jing. Equilibrium theory and geometrical constraint equation for two-component lipid bilayer vesicles[J].J Biol Phys, 2008, 34(6): 591-610.
    [9] Israelachvili J N. Intermolecular and Surface Forces[M]. 2nd ed. London: Academic Press, 1991: 27-28.
    [10] 黄克智, 夏之熙, 薛明德, 任文敏. 板壳理论[M].北京:清华大学出版社, 1987: 152-154.(HUANG Ke-zhi, XIA Zhi-xi, XUE Ming-de, REN Wen-min. The Theory of Plates and Shells[M]. Beijing: Tsinghua University Press, 1987: 152-154. (in Chinese))
    [11] 武际可, 王敏中, 王炜. 弹性力学引论[M]. 北京:北京大学出版社, 2001: 255-257.(WU Ji-ke, WANG Min-zhong, WANG Wei. Introductions to Elasticity[M]. Beijing: Beijing University Press, 2001: 255-257. (in Chinese))
    [12] 黄克智, 薛明德, 陆明万. 张量分析[M]. 第二版. 北京:清华大学出版社, 2003: 221-223.(HUANG Ke-zhi, XUE Ming-de, LU Ming-wan. Tensor Analysis[M]. 2nd ed.Beijing: Tsinghua University Press, 2003: 221-223. (in Chinese))
    [13] YIN Ya-jun, WU Ji-ye, FAN Qin-shan, HUANG Ke-zhi. Invariants for parallel mapping[J]. Tsinghua Science & Technology, 2009, 14(5): 646-654.
    [14] Lorenceau E, Quere D. Drops on a conical wire[J]. J Fluid Mech, 2004, 510: 29-45. doi: 10.1017/S0022112004009152
    [15] LIU Jian-lin, XIA Re, LI Bing-wei, FENG Xi-qiao. Directional motion of drops in a conical tube or on a conical fiber[J]. Chin Phys Lett, 2007, 24(11): 3210-3213. doi: 10.1088/0256-307X/24/11/052
    [16] ZHENG Yong-mei, BAI Hao, HUANG Zhong-bing, TIAN Xue-lin, NIE Fu-qiang, ZHAO Yong, ZHAI Jin, JIANG Lei. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(4): 640-643. doi: 10.1038/nature08729
    [17] 钱伟长.钱伟长文选[M]. 第四卷.上海:上海大学出版社, 2004, 69.(CHEIN Wei-zang. Selected Works of Chien Wei-zang[M]. Vol.4. Shanghai: Shanghai University Press, 2004, 69. (in Chinese))
  • 加载中
计量
  • 文章访问数:  2053
  • HTML全文浏览量:  186
  • PDF下载量:  1507
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-18
  • 修回日期:  2011-03-14
  • 刊出日期:  2011-05-15

目录

    /

    返回文章
    返回