留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

收缩喷嘴中的湍流——边界层解

R·马达核安 B·法哈涅 B·费入扎巴迪

R·马达核安, B·法哈涅, B·费入扎巴迪. 收缩喷嘴中的湍流——边界层解[J]. 应用数学和力学, 2011, 32(5): 608-622. doi: 10.3879/j.issn.1000-0887.2011.05.011
引用本文: R·马达核安, B·法哈涅, B·费入扎巴迪. 收缩喷嘴中的湍流——边界层解[J]. 应用数学和力学, 2011, 32(5): 608-622. doi: 10.3879/j.issn.1000-0887.2011.05.011
Reza Maddahian, Bijan Farhanieh, Bahar Firoozabadi. Turbulent Flow in Converging Nozzles Part Ⅰ——Boundary Layer Solution[J]. Applied Mathematics and Mechanics, 2011, 32(5): 608-622. doi: 10.3879/j.issn.1000-0887.2011.05.011
Citation: Reza Maddahian, Bijan Farhanieh, Bahar Firoozabadi. Turbulent Flow in Converging Nozzles Part Ⅰ——Boundary Layer Solution[J]. Applied Mathematics and Mechanics, 2011, 32(5): 608-622. doi: 10.3879/j.issn.1000-0887.2011.05.011

收缩喷嘴中的湍流——边界层解

doi: 10.3879/j.issn.1000-0887.2011.05.011
详细信息
  • 中图分类号: O357.5+2

Turbulent Flow in Converging Nozzles Part Ⅰ——Boundary Layer Solution

  • 摘要: 应用边界层积分法,研究锥形喷嘴入口区域中湍动涡流的发展.球面坐标系中的控制方程,通过边界层的假定得到简化,并对边界层进行了积分.应用4阶Adams预测校正法求解该微分方程组.入口区域的切向和轴向速度,分别应用自由涡流和均匀速度分布来表示.由于缺乏收缩喷嘴中涡流的实验数据,需要用数值模拟对该发展模式进行逆向验证.数值模拟的结果证明,该解析模型在预测边界层参数中的能力,例如边界层的生长、剪切率和边界层厚度,以及不同锥度角时的涡流强度衰减率等.为所提出的方法引进一个简明而有效的程序,用以研究几何形状收缩设备内的边界层参数.
  • [1] Algifri A H, Bhardwaj R K, Rao Y V N. Eddy viscosity in decaying swirl flow in a pipe[J]. Applied Scientific Research, 1988,45(4):287-302. doi: 10.1007/BF00457063
    [2] Najafi A F. Investigation of internal turbulent swirling flow, single phase and two phase flow[D]. Ph D dissertation. Sharif University of Technology, 2004:24-30.
    [3] Gul H. Enhancement of heat transfer in a circular tube with tangential swirl generators[J]. Experimental Heat Transfer, 2006, 19(2): 81-93. doi: 10.1080/08916150500318422
    [4] Chang F, Dhir V K. Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection[J]. International Journal of Heat and Fluid Flow, 1995, 16(2): 78-87. doi: 10.1016/0142-727X(94)00016-6
    [5] Thambu R, Babinchak B T, Ligrani P M, Hedlund C R, Moon H K, Glezer B. Flow in a simple swirl chamber with and without controlled inlet forcing[J]. Experiments in Fluids, 1999, 26(4): 347-357. doi: 10.1007/s003480050298
    [6] Zaherzade N H, Jagadish B S. Heat transfer in decaying swirl flow[J]. International Journal of Heat and Mass Transfer, 1975, 18(7/8): 941-944. doi: 10.1016/0017-9310(75)90187-8
    [7] Yilmaz M, Yapici S, Jomakli O, Sara O N. Energy correlation of heat transfer and enhancement efficiency in decaying swirl flow[J]. Heat and Mass Transfer, 2002, 38(4/5): 351-358. doi: 10.1007/s002310100207
    [8] Steenbergen W, Voskamp J. The rate of decay of swirl in turbulent pipe flow[J]. Flow Measurement and Instrumentation, 1998, 9(2): 67-78. doi: 10.1016/S0955-5986(98)00016-8
    [9] Cakmak G, Yildiz C. The influence of the injectors with swirling flow generating on the heat transfer in the concentric heat exchanger[J]. International Communication in Heat and Mass Transfer, 2007, 34(6): 728-739. doi: 10.1016/j.icheatmasstransfer.2007.03.007
    [10] Martemianov S, Okulov V L. On heat transfer enhancement in swirl pipe flows[J]. International Journal of Heat and Mass Transfer, 2004, 47(10/11): 2379-2393. doi: 10.1016/j.ijheatmasstransfer.2003.11.005
    [11] Taylor G I. The boundary layer in the converging nozzle of swirl atomizer[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1950, 3(2): 129-139. doi: 10.1093/qjmam/3.2.129
    [12] Weber H E. The boundary layer inside a conical surface due to swirl[J]. Journal of Applied Mechanics, 1956, 23: 587-592.
    [13] Kreith F, Margolis D. Heat transfer and friction in turbulent vortex flow[J]. Applied Scientific Research, 1959, 8(1): 457-473. doi: 10.1007/BF00411769
    [14] Rochino A, Lavan Z. Analytical investigations of incompressible turbulent swirling flow in stationary ducts[J]. Journal of Applied Mechanics, 1969, 36: 151-158. doi: 10.1115/1.3564602
    [15] Akiyama T, Ikeda M. Fundamental study of the fluid mechanics of swirling pipe flow with air suction[J]. Industrial and Engineering Chemistry Process Design and Development, 1986, 25(4): 907-913. doi: 10.1021/i200035a012
    [16] Yajnik K S, Subbaiah M V. Experiments on swirling turbulent flows—part 1: similarity in swirling flows[J]. Journal of Fluid Mechanics, 1973, 60(4): 665-687. doi: 10.1017/S0022112073000406
    [17] Kitoh O. Experimental study of turbulent swirling flow in a straight pipe[J]. Journal of Fluid Mechanics, 1991, 225: 445-479. doi: 10.1017/S0022112091002124
    [18] Algifri A H, Bhardwaj R K, Rao Y V N. Turbulence measurement in decaying swirl flow in a pipe[J]. Applied Scientific Research, 1988, 45(3): 233-250. doi: 10.1007/BF00384689
    [19] Alekseenko S V, Kuibin P A, Okulov V L, Shtork S I. Helical vortices in swirl flow[J]. Journal of Fluid Mechanics, 1999, 382: 195-243. doi: 10.1017/S0022112098003772
    [20] Lucca-Negro O, O′Dohery T. Vortex breakdown: a review[J]. Progress in Energy and Combustion Science, 2001, 27(4): 431-481. doi: 10.1016/S0360-1285(00)00022-8
    [21] Talbot L. Laminar swirling pipe flow[J]. Journal of Applied Mechanics, 1954,21: 1-7.
    [22] Kreith F, Sonju K. The decay of a turbulent swirl in a pipe[J]. Journal of Fluid Mechanics, 1965, 22(2): 257-271. doi: 10.1017/S0022112065000733
    [23] Yu S C M, Kitoh O. A general formulation for the decay of swirling motion along a straight pipe[J]. International Communications in Heat and Mass Transfer, 1994, 21(5): 719-728. doi: 10.1016/0735-1933(94)90073-6
    [24] Harris M J R. The decay of swirl in a pipe[J]. International Journal of Heat and Fluid Flow, 1994, 15(3): 212-217. doi: 10.1016/0142-727X(94)90040-X
    [25] Najafi A F, Saidi M H, Sadeghipour M S, Souhar M. Boundary layer solution for the turbulent swirling decay flow through a fixed pipe: SBR at the inlet[J]. International Journal of Engineering Science, 2005, 43(1/2): 107-120. doi: 10.1016/j.ijengsci.2004.08.010
    [26] Maddahian R, Kebriaee A, Farhanieh B, Firoozabadi B. Analytical investigation of boundary layer growth and swirl intensity decay rate in a pipe[J]. Archive of Applied Mechanics, 2010, 81(4): 489-501.
    [27] Burden R L, Faires J D. Numerical Analysis[M]. 7th ed. Belmont: Brooks/Cole, 2000: 297-300.
    [28] Ashraf A I. Comprehensive study of internal flow field and linear and nonlinear instability of an annular liquid sheet emanating from an atomizer[D]. Ph D dissertation. University of Cincinnati, 2006: 32-49.
    [29] Schlichting H. Boundary Layer Theory[M]. 7th ed. New York: McGraw-Hill, 1973: 47-223.
    [30] Farhanieh B, Davidson L. Manual of CALC-BFC[M]. Gothenburg, Sweden: Chalmers University of Technology, 1991.
    [31] Maddahian R, Farhanieh B. Numerical investigation of thermo fluid mechanics of differentially heated rotating tubes[J]. Heat Transfer Engineering, 2010, 31(3): 201-211. doi: 10.1080/01457630903304376
    [32] Patankar S V. Numerical Heat Transfer and Fluid Flow[M]. Washington DC:Taylor & Francis, 1980: 113-135.
    [33] Rhie C M, Chow L W. Numerical study of the turbulent flow past an airfoil with trailing edge separation[J]. AIAA J, 1983, 21(11): 1527-1532.
    [34] Slack M D, Prasad R O, Bakker A, Boysan F. Advances in cyclone modeling using unstructured grids[J]. Chemical Engineering Research and Design, 2000, 78(8): 1098-1104. doi: 10.1205/026387600528373
    [35] De Souza J, Silveria-Neto A. Preliminary results of large eddy simulations of a hydrocyclone[J]. Thermal Engineering, 2004, 3(2): 168-173.
    [36] Cullivan J C, Williams R A, Cross C R. Understanding the hydrocyclone separator through computational fluid dynamics[J]. Chemical Engineering Research and Design, 2003, 81(4): 455-466. doi: 10.1205/026387603765173718
    [37] Cullivan J C. Williams R A, Dyakowski T, Cross C R. New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics[J]. Minerals Engineering, 2004, 17(5): 651-660. doi: 10.1016/j.mineng.2004.04.009
    [38] Nowakowski A F, Dyakowski T. Investigation of swirling flow structure in hydrocyclones[J]. Chemical Engineering Research and Design, 2003, 81(8): 862-873. doi: 10.1205/026387603322482103
    [39] Launder B E, Reece G J, Ro di W. Progress in the development of a Reynolds-stress turbulence closure[J]. Journal of Fluid Mechanics, 1975, 68(3): 537-566. doi: 10.1017/S0022112075001814
  • 加载中
计量
  • 文章访问数:  1916
  • HTML全文浏览量:  177
  • PDF下载量:  813
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-11
  • 修回日期:  2010-12-22
  • 刊出日期:  2011-05-15

目录

    /

    返回文章
    返回