留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的NSGA-Ⅱ算法研究风力机叶片多目标优化

王珑 王同光 罗源

王珑, 王同光, 罗源. 改进的NSGA-Ⅱ算法研究风力机叶片多目标优化[J]. 应用数学和力学, 2011, 32(6): 693-701. doi: 10.3879/j.issn.1000-0887.2011.06.006
引用本文: 王珑, 王同光, 罗源. 改进的NSGA-Ⅱ算法研究风力机叶片多目标优化[J]. 应用数学和力学, 2011, 32(6): 693-701. doi: 10.3879/j.issn.1000-0887.2011.06.006
WANG Long, WANG Tong-guang, LUO Yuan. Improved NSGA-Ⅱ in Multi-Objective Optimization Studies of Wind Turbine Blades[J]. Applied Mathematics and Mechanics, 2011, 32(6): 693-701. doi: 10.3879/j.issn.1000-0887.2011.06.006
Citation: WANG Long, WANG Tong-guang, LUO Yuan. Improved NSGA-Ⅱ in Multi-Objective Optimization Studies of Wind Turbine Blades[J]. Applied Mathematics and Mechanics, 2011, 32(6): 693-701. doi: 10.3879/j.issn.1000-0887.2011.06.006

改进的NSGA-Ⅱ算法研究风力机叶片多目标优化

doi: 10.3879/j.issn.1000-0887.2011.06.006
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2007CB714600)
详细信息
    作者简介:

    王珑(1982- ),男,江苏淮安人,博士生(E-mail:wl2007@nuaa.edu.cn);王同光,教授,博士,博士生导师(联系人.E-mail:tgwang@nuaa.edu.cn).

  • 中图分类号: TM614

Improved NSGA-Ⅱ in Multi-Objective Optimization Studies of Wind Turbine Blades

  • 摘要: 将一种采用精英控制策略和动态拥挤方法用于快速非支配排序遗传算法(NSGA-Ⅱ),并应用到风力机叶片的优化研究中,获得了一种新颖的风力机叶片多目标优化设计方法.作为应用算例,以设计风速下的功率系数最大和叶片质量最小为优化目标,用该方法设计了5 MW大型风力机叶片.优化结果表明,此算法在处理风力机多目标优化问题取得了良好的效果,给出的是一个Pareto最优解集,而不是传统优化方法追求的单个最优解,为风力机多目标优化设计提供新的思路和通用的算法.
  • [1] Wilson R E, Lissaman P D S. Applied aerodynamics of wind power machines[R]. Report NSF/RA/N 7413. NTIS PB 238594, Oregon State University, 1974.
    [2] Selig M S, Coverstone-Carroll V L. Application of a genetic algorithm to wind turbine design[J]. Journal of Solar Energy Engineering, 1996, 118(1): 22-29.
    [3] Wood D H. Dual purpose design of small wind turbine blades[J]. Wind Engineering, 2004, 28(5): 511-528. doi: 10.1260/0309524043028037
    [4] Sale D, Jonkman J, Musial W. Development of a hydrodynamic optimization tool for stall-regulated hydrokinetic turbine rotors[C]ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, 2009: 901-906.
    [5] Roy R, Hinduja S, Teti R. Recent advances in engineering design optimisation: challenges and future trends[J]. Manufacturing Technology, 2008, 57(2): 697-715.
    [6] Horn J, Nafploitis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization[C]Proceedings of the First IEEE Conference on Evolutionary Computation. NJ: IEEE Press, 1994: 82-87.
    [7] Knowles J, Corne D. The Pareto archived evolution strategy: a new baseline algorithm for multi-objective optimization[C] Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1999: 98-105.
    [8] Kim M, Hiroyasu T, Miki M, Watanabe S. SPEA2+: Improving the performance of the strength Pareto evolutionary algorithm 2[C]Proceedings of 8th International Conference on Parallel Problem Solving From Nature. Birmingham, UK, 2004: 742-751.
    [9] Watanabe S, Hiroyasu T, Miki M. NCGA: neighborhood cultivation genetic algorithm for multi-objective optimization problems[C]Proceedings of the Genetic and Evolutionary Compution Conference(GECCO’2002), 2002: 458-465.
    [10] Deb K, Agrawal S, Pratab A, Meyarivan T. A fast elitist non-dominated sorting genetic algorithm for multi-objective: NSGA-Ⅱ[J]. Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [11] Srinivas N, Deb K. Multi-objective optimization using non-dominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248. doi: 10.1162/evco.1994.2.3.221
    [12] Deb K, Agrawal R B. Simulated binary crossover for continuous search space[J]. Complex Syst, 1995, 3(9): 115-148.
    [13] Deb K, Goel T. Controlled elitist non-dominated sorting genetic algorithms for better convergence[C]Proceedings of First International Conference on Evolutionary Multi-Criterion Optimization. Zurich, Switzerland, 2001: 67-81.
    [14] LUO Biao, ZHENG Jin-hua, XIE Jiong-liang, WU Jun. Dynamic crowding distance—a new diversity maintenance strategy for MOEAs[C]Proceedings of the IEEE International Conference on Natural Computation. NJ: IEEE Press,2008: 580-585.
    [15] Par J, Kima J, Shina Y, Leea J, Parka J. 3 MW class offshore wind turbine development[J]. Current Applied Physics, 2010, 10(2): 307-310. doi: 10.1016/j.cap.2009.11.032
    [16] Griffin D A, Zuteck M D. Scaling of composite wind turbine blades for rotors of 80 to 120 meter diameter[J]. Journal of Solar Energy Engineering, 2001, 123(4): 310-319. doi: 10.1115/1.1413215
    [17] Bossanyi E A. Wind turbine control for load reduction[J]. Wind Energy, 2003, 6(2): 229-244. doi: 10.1002/we.95
    [18] DAI Chang-hui, TANG Rui-yuan, WANG Tang-guang. Prediction of aerodynamic performance of a horizontal-axis rotor in condition of wind shear[C]Proc Asian and Pacific Wind Energy Conf, 1988.
    [19] Lindenburg C. Aeroelastic Analysis of the LMH64-5 Blade Concept[M]. New York: Addison-Wesley, 2003.
    [20] Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, National Renewable Energy Laboratory, 2009.
  • 加载中
计量
  • 文章访问数:  1693
  • HTML全文浏览量:  147
  • PDF下载量:  1027
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-15
  • 修回日期:  2011-04-14
  • 刊出日期:  2011-06-15

目录

    /

    返回文章
    返回