[1] |
Marx K A. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface[J]. Biomacromolecules, 2003, 4(5): 1099-1120. doi: 10.1021/bm020116i
|
[2] |
Reed C E, Kanazawa K K, Kaufman J H. Physical description of a viscoelastically loaded AT-cut quartz resonator[J]. Journal of Applied Physics, 1990, 68(5): 1993-2001. doi: 10.1063/1.346548
|
[3] |
Kanazawa K K. Mechanical behaviour of films on the quartz microbalance[J]. Faraday Discussions, 1997, 107: 77-90. doi: 10.1039/a702998e
|
[4] |
Arce L, Zougagh M, Arce C, Moreno A, Rios A, Valcarcel M. Self-assembled monolayer-based piezoelectric flow immunosensor for the determination of canine immunoglobulin[J]. Biosensors and Bioelectronics, 2007, 22(12): 3217-3223. doi: 10.1016/j.bios.2007.02.014
|
[5] |
Rabe J, Buttgenbach S, Schroder J, Hauptmann P. Monolithic miniaturized quartz microbalance array and its application to chemical sensor systems for liquids[J]. IEEE Sensors Journal, 2003, 3(4): 361-368. doi: 10.1109/JSEN.2003.815783
|
[6] |
Zhao Y P, Wang L S, Yu T X. Mechanics of adhesion in MEMS—a review[J]. Journal of Adhesion Science and Technology, 2003, 17(4):519-546. doi: 10.1163/15685610360554393
|
[7] |
Zhang L X, Zhao Y P. Electromechanical model of RF MEMS switches[J]. Microsystem Technologies, 2003, 9(6/7): 420-426. doi: 10.1007/s00542-002-0250-2
|
[8] |
An P, Chen J, Hao Y L. Modeling and simulation of a novel vertical actuator based on electrowetting on dielectric[J]. Acta Mechanica Sinica, 2009, 25(5): 669-675. doi: 10.1007/s10409-009-0263-5
|
[9] |
Zhang K, Cui Y J, Xiong C Y, Wang C S, Fang J. Electro-mechanical coupling analysis of MEMS structures by boundary element method[J]. Acta Mechanica Sinica, 2004, 20(2): 185-191. doi: 10.1007/BF02484264
|
[10] |
Hu Y Q, Zhao Y P, Yu T X. Tensile tests of micro anchors anodically bonded between pyrex glass and aluminum thin film coated on silicon wafer[J]. Microelectronics Reliability, 2008, 48(10): 1720-1723. doi: 10.1016/j.microrel.2008.04.016
|
[11] |
Fu Y Q, Luo J K, Du X Y, Flewitt A J, Li Y, Markx G H, Walton A J, Milne W I. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review[J]. Sensors and Actuators B, 2010, 143(2): 606-619. doi: 10.1016/j.snb.2009.10.010
|
[12] |
Weber J, Link M, Primig R, Pitzer D, Wersing W, Schreiter M. Investigation of the scaling rules determining the performance of film bulk acoustic resonators operating as mass sensors[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(2): 405-412. doi: 10.1109/TUFFC.2007.254
|
[13] |
Gabl R, Feucht H D, Zeininger H, Eckstein G, Schreiter M, Primig R, Pitzer D, Wersing W. First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles[J]. Biosensors and Bioelectronics, 2004, 19(6): 615-620. doi: 10.1016/S0956-5663(03)00259-8
|
[14] |
Weber J, Albers W M, Tuppurainen J, Link M, Gabl R, Wersing W, Schreiter M. Shear mode FBARs as highly sensitive liquid biosensors[J]. Sensors and Actuators A, 2006, 128(1): 84-88. doi: 10.1016/j.sna.2006.01.005
|
[15] |
Rey-Mermet S, Lanz R, Muralt P. Bulk acoustic wave resonator operating at 8 GHz for gravimetric sensing of organic films[J]. Sensors and Actuators B, 2006, 114(2): 681-686. doi: 10.1016/j.snb.2005.04.047
|
[16] |
Zhang H, Kim E S. Micromachined acoustic resonant mass sensor[J]. Journal of Microelectromechanical Systems, 2005, 14(4): 699-706. doi: 10.1109/JMEMS.2005.845405
|
[17] |
Kang Y R, Kang S C, Paek K K, Kim Y K, Kim S W, Ju B K. Air-gap type film bulk acoustic resonator using flexible thin substrate[J]. Sensors and Actuators A, 2005, 117(1): 62-70. doi: 10.1016/j.sna.2004.05.035
|
[18] |
Wingqvist G, Bjurstrom J, Hellgren A C, Katardjiev I. Immunosensor utilizing a shear mode thin film bulk acoustic sensor[J]. Sensors and Actuators B, 2007, 127(1): 248-252. doi: 10.1016/j.snb.2007.07.051
|
[19] |
Tukkiniemi K, Rantala A, Nirschl M, Pitzer D, Huber T, Schreiter M. Fully integrated FBAR sensor matrix for mass detection[J]. Procedia Chemistry, 2009, 1(1): 1051-1054. doi: 10.1016/j.proche.2009.07.262
|
[20] |
Johnston M L, Kymissis I, Shepard K L. FBAR-CMOS oscillator array for mass-sensing applications[J]. IEEE Sensors Journal, 2010, 10(6): 1042-1047. doi: 10.1109/JSEN.2010.2042711
|
[21] |
Nirschl M, Rantala A, Tukkiniemi K, Auer S, Hellgren A C, Pitzer D, Schreiter M, Vikholm-Lundin I. CMOS-integrated film bulk acoustic resonators for label-free biosensing[J]. Sensors, 2010, 10(5): 4180-4193. doi: 10.3390/s100504180
|
[22] |
Lakin K M. A review of thin-film resonator technology[J]. IEEE Microwave Magazine, 2003, 4(4): 61-67. doi: 10.1109/MMW.2003.1266067
|
[23] |
Link M, Weber J, Schreiter M, Wersing W, Elmazria O, Alnot P. Sensing characteristics of high-frequency shear mode resonators in glycerol solutions[J]. Sensors and Actuators B, 2007, 121(2): 372-378. doi: 10.1016/j.snb.2006.03.055
|
[24] |
Nirschl M, Schreiter M, Voros J. Comparison of FBAR and QCM-D sensitivity dependence on adlayer thickness and viscosity[J]. Sensors and Actuators A, 2011, 165(2): 415-421. doi: 10.1016/j.sna.2010.11.003
|
[25] |
Qiu X T, Tang R, Zhu J, Oiler J, Yu C J, Wang Z Y, Yu H Y. Experiment and theoretical analysis of relative humidity sensor based on film bulk acoustic-wave resonator[J]. Sensors and Actuators B, 2010, 147(2): 381-384. doi: 10.1016/j.snb.2010.04.012
|
[26] |
Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 2005, 98(4): 041301. doi: 10.1063/1.1992666
|