留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种提高薄膜体声波谐振器质量分辨率的主动控制方法

贺学锋 刘兴 印显方 温志渝 陈可万

贺学锋, 刘兴, 印显方, 温志渝, 陈可万. 一种提高薄膜体声波谐振器质量分辨率的主动控制方法[J]. 应用数学和力学, 2011, 32(6): 702-709. doi: 10.3879/j.issn.1000-0887.2011.06.007
引用本文: 贺学锋, 刘兴, 印显方, 温志渝, 陈可万. 一种提高薄膜体声波谐振器质量分辨率的主动控制方法[J]. 应用数学和力学, 2011, 32(6): 702-709. doi: 10.3879/j.issn.1000-0887.2011.06.007
HE Xue-feng, LIU Xing, YIN Xian-fang, WEN Zhi-yu, CHEN Ke-wan. An Active Control Scheme for Improving Mass Resolution of Film Bulk Acoustic Resonators[J]. Applied Mathematics and Mechanics, 2011, 32(6): 702-709. doi: 10.3879/j.issn.1000-0887.2011.06.007
Citation: HE Xue-feng, LIU Xing, YIN Xian-fang, WEN Zhi-yu, CHEN Ke-wan. An Active Control Scheme for Improving Mass Resolution of Film Bulk Acoustic Resonators[J]. Applied Mathematics and Mechanics, 2011, 32(6): 702-709. doi: 10.3879/j.issn.1000-0887.2011.06.007

一种提高薄膜体声波谐振器质量分辨率的主动控制方法

doi: 10.3879/j.issn.1000-0887.2011.06.007
基金项目: 国家自然科学基金资助项目(61076106);国家高技术研究计划(863计划)资助项目(2008AA04Z310);高等学校科技创新工程重大项目培育资金资助项目(708072)
详细信息
    作者简介:

    贺学锋(1970- ),男,重庆人,副教授,博士(联系人.E-mail:hexuefeng@cqu.edu.cn).

  • 中图分类号: O429

An Active Control Scheme for Improving Mass Resolution of Film Bulk Acoustic Resonators

  • 摘要: 低浓度小分子检测对基于薄膜体声波谐振器的传感器的分辨率提出了较高要求,针对以上需求,提出一种提高薄膜体声波传感器分辨率的主动控制方法,即在谐振器的驱动电压上叠加一个反馈电压,该反馈电压是对通过谐振器的电流施加一个常数增益和一个常数相位差得到.反馈电压产生的声能部分地补偿了材料阻尼和声音散射引起的声能损失,进而提高了薄膜体声波传感器的品质因子和质量分辨率.忽略电极影响,基于连续介质理论得到了具有主动控制功能的薄膜体声波传感器阻抗的显式表达式.数值仿真结果表明,薄膜体声波传感器的阻抗强烈依赖于反馈电压相对于电流的增益和相位差,当采用适当的增益和相位差时,传感器的质量分辨率可以大幅提高.以上主动控制方法对提高石英晶体微天平的分辨率同样有效.
  • [1] Marx K A. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface[J]. Biomacromolecules, 2003, 4(5): 1099-1120. doi: 10.1021/bm020116i
    [2] Reed C E, Kanazawa K K, Kaufman J H. Physical description of a viscoelastically loaded AT-cut quartz resonator[J]. Journal of Applied Physics, 1990, 68(5): 1993-2001. doi: 10.1063/1.346548
    [3] Kanazawa K K. Mechanical behaviour of films on the quartz microbalance[J]. Faraday Discussions, 1997, 107: 77-90. doi: 10.1039/a702998e
    [4] Arce L, Zougagh M, Arce C, Moreno A, Rios A, Valcarcel M. Self-assembled monolayer-based piezoelectric flow immunosensor for the determination of canine immunoglobulin[J]. Biosensors and Bioelectronics, 2007, 22(12): 3217-3223. doi: 10.1016/j.bios.2007.02.014
    [5] Rabe J, Buttgenbach S, Schroder J, Hauptmann P. Monolithic miniaturized quartz microbalance array and its application to chemical sensor systems for liquids[J]. IEEE Sensors Journal, 2003, 3(4): 361-368. doi: 10.1109/JSEN.2003.815783
    [6] Zhao Y P, Wang L S, Yu T X. Mechanics of adhesion in MEMS—a review[J]. Journal of Adhesion Science and Technology, 2003, 17(4):519-546. doi: 10.1163/15685610360554393
    [7] Zhang L X, Zhao Y P. Electromechanical model of RF MEMS switches[J]. Microsystem Technologies, 2003, 9(6/7): 420-426. doi: 10.1007/s00542-002-0250-2
    [8] An P, Chen J, Hao Y L. Modeling and simulation of a novel vertical actuator based on electrowetting on dielectric[J]. Acta Mechanica Sinica, 2009, 25(5): 669-675. doi: 10.1007/s10409-009-0263-5
    [9] Zhang K, Cui Y J, Xiong C Y, Wang C S, Fang J. Electro-mechanical coupling analysis of MEMS structures by boundary element method[J]. Acta Mechanica Sinica, 2004, 20(2): 185-191. doi: 10.1007/BF02484264
    [10] Hu Y Q, Zhao Y P, Yu T X. Tensile tests of micro anchors anodically bonded between pyrex glass and aluminum thin film coated on silicon wafer[J]. Microelectronics Reliability, 2008, 48(10): 1720-1723. doi: 10.1016/j.microrel.2008.04.016
    [11] Fu Y Q, Luo J K, Du X Y, Flewitt A J, Li Y, Markx G H, Walton A J, Milne W I. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review[J]. Sensors and Actuators B, 2010, 143(2): 606-619. doi: 10.1016/j.snb.2009.10.010
    [12] Weber J, Link M, Primig R, Pitzer D, Wersing W, Schreiter M. Investigation of the scaling rules determining the performance of film bulk acoustic resonators operating as mass sensors[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(2): 405-412. doi: 10.1109/TUFFC.2007.254
    [13] Gabl R, Feucht H D, Zeininger H, Eckstein G, Schreiter M, Primig R, Pitzer D, Wersing W. First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles[J]. Biosensors and Bioelectronics, 2004, 19(6): 615-620. doi: 10.1016/S0956-5663(03)00259-8
    [14] Weber J, Albers W M, Tuppurainen J, Link M, Gabl R, Wersing W, Schreiter M. Shear mode FBARs as highly sensitive liquid biosensors[J]. Sensors and Actuators A, 2006, 128(1): 84-88. doi: 10.1016/j.sna.2006.01.005
    [15] Rey-Mermet S, Lanz R, Muralt P. Bulk acoustic wave resonator operating at 8 GHz for gravimetric sensing of organic films[J]. Sensors and Actuators B, 2006, 114(2): 681-686. doi: 10.1016/j.snb.2005.04.047
    [16] Zhang H, Kim E S. Micromachined acoustic resonant mass sensor[J]. Journal of Microelectromechanical Systems, 2005, 14(4): 699-706. doi: 10.1109/JMEMS.2005.845405
    [17] Kang Y R, Kang S C, Paek K K, Kim Y K, Kim S W, Ju B K. Air-gap type film bulk acoustic resonator using flexible thin substrate[J]. Sensors and Actuators A, 2005, 117(1): 62-70. doi: 10.1016/j.sna.2004.05.035
    [18] Wingqvist G, Bjurstrom J, Hellgren A C, Katardjiev I. Immunosensor utilizing a shear mode thin film bulk acoustic sensor[J]. Sensors and Actuators B, 2007, 127(1): 248-252. doi: 10.1016/j.snb.2007.07.051
    [19] Tukkiniemi K, Rantala A, Nirschl M, Pitzer D, Huber T, Schreiter M. Fully integrated FBAR sensor matrix for mass detection[J]. Procedia Chemistry, 2009, 1(1): 1051-1054. doi: 10.1016/j.proche.2009.07.262
    [20] Johnston M L, Kymissis I, Shepard K L. FBAR-CMOS oscillator array for mass-sensing applications[J]. IEEE Sensors Journal, 2010, 10(6): 1042-1047. doi: 10.1109/JSEN.2010.2042711
    [21] Nirschl M, Rantala A, Tukkiniemi K, Auer S, Hellgren A C, Pitzer D, Schreiter M, Vikholm-Lundin I. CMOS-integrated film bulk acoustic resonators for label-free biosensing[J]. Sensors, 2010, 10(5): 4180-4193. doi: 10.3390/s100504180
    [22] Lakin K M. A review of thin-film resonator technology[J]. IEEE Microwave Magazine, 2003, 4(4): 61-67. doi: 10.1109/MMW.2003.1266067
    [23] Link M, Weber J, Schreiter M, Wersing W, Elmazria O, Alnot P. Sensing characteristics of high-frequency shear mode resonators in glycerol solutions[J]. Sensors and Actuators B, 2007, 121(2): 372-378. doi: 10.1016/j.snb.2006.03.055
    [24] Nirschl M, Schreiter M, Voros J. Comparison of FBAR and QCM-D sensitivity dependence on adlayer thickness and viscosity[J]. Sensors and Actuators A, 2011, 165(2): 415-421. doi: 10.1016/j.sna.2010.11.003
    [25] Qiu X T, Tang R, Zhu J, Oiler J, Yu C J, Wang Z Y, Yu H Y. Experiment and theoretical analysis of relative humidity sensor based on film bulk acoustic-wave resonator[J]. Sensors and Actuators B, 2010, 147(2): 381-384. doi: 10.1016/j.snb.2010.04.012
    [26] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 2005, 98(4): 041301. doi: 10.1063/1.1992666
  • 加载中
计量
  • 文章访问数:  1316
  • HTML全文浏览量:  42
  • PDF下载量:  788
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-15
  • 修回日期:  2011-04-14
  • 刊出日期:  2011-06-15

目录

    /

    返回文章
    返回