留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相场方法的铁基合金高温氧化与生长应力分析

杨帆 刘彬 方岱宁

杨帆, 刘彬, 方岱宁. 基于相场方法的铁基合金高温氧化与生长应力分析[J]. 应用数学和力学, 2011, 32(6): 710-717. doi: 10.3879/j.issn.1000-0887.2011.06.008
引用本文: 杨帆, 刘彬, 方岱宁. 基于相场方法的铁基合金高温氧化与生长应力分析[J]. 应用数学和力学, 2011, 32(6): 710-717. doi: 10.3879/j.issn.1000-0887.2011.06.008
YANG Fan, LIU Bin, FANG Dai-ning. Analysis on High-Temperature Oxidation and the Growth Stress of Iron-Based Alloy Using Phase Field Method[J]. Applied Mathematics and Mechanics, 2011, 32(6): 710-717. doi: 10.3879/j.issn.1000-0887.2011.06.008
Citation: YANG Fan, LIU Bin, FANG Dai-ning. Analysis on High-Temperature Oxidation and the Growth Stress of Iron-Based Alloy Using Phase Field Method[J]. Applied Mathematics and Mechanics, 2011, 32(6): 710-717. doi: 10.3879/j.issn.1000-0887.2011.06.008

基于相场方法的铁基合金高温氧化与生长应力分析

doi: 10.3879/j.issn.1000-0887.2011.06.008
基金项目: 国家自然科学基金资助项目(9050501510702035)
详细信息
    作者简介:

    杨帆(1981- ),男,吉林人,博士生(E-mail:fan-yang06@mails.tsinghua.edu.cn);方岱宁,教授(联系人.E-mail:fangdn@mail.tsinghua.edu.cn).

  • 中图分类号: TG172.82

Analysis on High-Temperature Oxidation and the Growth Stress of Iron-Based Alloy Using Phase Field Method

  • 摘要: 高温氧化性能是评价热防护材料的一项重要指标,然而由于氧化过程是一个含微结构演化的复杂过程,其定量计算分析一直是研究的难点.基于材料热力学理论,建立了能够考虑微结构演化的相场方法来模拟材料的高温氧化,从而解决了抗氧化性能与氧化生长应力定量计算分析的问题.采用所建立的相场方法,对Fe-Cr-Al-Y合金的高温扩散过程、氧化性能和生长应力演化进行了计算,数值计算结果与文献中的实验结果吻合良好,计算结果还揭示了最大生长应力和外界环境氧浓度之间的线性关系.所发展的相场方法为研究复杂环境下的高温氧化提供了一种有力的计算分析手段.
  • [1] Kulkarni A J, Zhou M. Surface-effects-dominated thermal and mechanical responses of zinc oxide nanobelts[J]. Acta Mech Sinica, 2006, 22(3): 217-224. doi: 10.1007/s10409-006-0111-9
    [2] Li W G, Yang F, Fang D N. The temperature-dependent fracture strength model for ultra-high temperature ceramics[J]. Acta Mech Sinica, 2010, 26(2): 235-239. doi: 10.1007/s10409-009-0326-7
    [3] Kaufman L, Clougher E, Berkowit J. Oxidation characteristics of hafnium and zirconium diboride[J]. Transactions of the Metallurgical Society of Aime, 1967, 239(4): 458-466.
    [4] Gee S M, Little J A. Oxidation behavior and protection of carbon/carbon composites[J]. J Mater Sci, 1991, 26(4): 1093-1100.
    [5] Opila E, Levine S, Lorincz J. Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: effect of Ta additions[J]. J Mater Sci, 2004, 39(19): 5969-5977. doi: 10.1023/B:JMSC.0000041693.32531.d1
    [6] Monteverde F. The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures[J]. Corros Sci, 2005, 47(8): 2020-2033. doi: 10.1016/j.corsci.2004.09.019
    [7] Pilling N B, Bedworth R E. The oxidation of metals at high temperatures[J]. Journal of the Institute of Metals, 1923, 29: 529-582.
    [8] Wagner C. The theory of the warm-up process[J]. Z Phys Chem, 1933, 21(1/2): 25-41.
    [9] Markworth A J. Kinetics of anisothermal oxidation[J]. Metall Mater Trans A, 1977, 8(12): 2014-2015. doi: 10.1007/BF02646577
    [10] Parthasarathy T A, Rapp R A, Opeka M, Kerans R J. A model for the oxidation of ZrB2, HfB2 and TiB2[J]. Acta Mater, 2007, 55(17): 5999-6010. doi: 10.1016/j.actamat.2007.07.027
    [11] Chou K C, Hou X M. Kinetics of high-temperature oxidation of inorganic nonmetallic materials[J]. J Am Ceram Soc, 2009, 92(3): 585-594. doi: 10.1111/j.1551-2916.2008.02903.x
    [12] Hou X M, Chou K C. Investigation of isothermal oxidation of AlN ceramics using different kinetic model[J]. Corros Sci, 2009, 51(3): 556-561. doi: 10.1016/j.corsci.2008.12.007
    [13] Huntz A M. Stresses in NiO, Cr2O3 and Al2O3  oxide scales[J]. Mat Sci Eng A, 1995, 201(1/2): 211-228. doi: 10.1016/0921-5093(94)09747-X
    [14] Tolpygo V K, Clarke D R. Competition between stress generation and relaxation during oxidation of an Fe-Cr-Al-Y alloy[J]. Oxid Met, 1998, 49(1/2): 187-212. doi: 10.1023/A:1018828619028
    [15] Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations[J]. Comput Phys Commun, 1998, 108(2/3): 147-158. doi: 10.1016/S0010-4655(97)00115-X
    [16] Chen L Q. Phase-field models for microstructure evolution[J]. Annu Rev Mater Res, 2002, 32: 113-140. doi: 10.1146/annurev.matsci.32.112001.132041
    [17] Shi S Q, Ma X Q, Woo C H, Chen L Q. The phase field model for hydrogen diffusion and gamma -hydride precipitation in zirconium under non-uniformly applied stress[J]. Mech Mater, 2006, 38(1/2): 3-10. doi: 10.1016/j.mechmat.2005.05.005
    [18] Guo X H, Shi S Q, Qiao L J. Simulation of hydrogen diffusion and initiation of hydrogen-induced cracking in PZT ferroelectric ceramics using a phase field model[J]. J Am Ceram Soc, 2007, 90(9): 2868-2872. doi: 10.1111/j.1551-2916.2007.01821.x
    [19] Song Y C, Soh A K, Ni Y. Phase field simulation of crack tip domain switching in ferroelectrics[J]. J Phys D Appl Phys, 2007, 40(4): 1175-1182. doi: 10.1088/0022-3727/40/4/040
    [20] Shewmon P G. Diffusion in Solid[M]. New York: McGraw-Hill, 1963.
    [21] Reddy K P R, Smialek J L, Cooper A R. O-18 tracer studies of Al2O3 scale formation on NiCrAl alloys[J]. Oxid Met, 1982, 17(5/6): 429-449. doi: 10.1007/BF00742122
  • 加载中
计量
  • 文章访问数:  1210
  • HTML全文浏览量:  144
  • PDF下载量:  837
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-23
  • 修回日期:  2011-04-14
  • 刊出日期:  2011-06-15

目录

    /

    返回文章
    返回