留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

瞬态问题稳定性及弥散分析的无网格RKPM配点法研究

罗汉中 刘学文 黄醒春

罗汉中, 刘学文, 黄醒春. 瞬态问题稳定性及弥散分析的无网格RKPM配点法研究[J]. 应用数学和力学, 2011, 32(6): 730-740. doi: 10.3879/j.issn.1000-0887.2011.06.010
引用本文: 罗汉中, 刘学文, 黄醒春. 瞬态问题稳定性及弥散分析的无网格RKPM配点法研究[J]. 应用数学和力学, 2011, 32(6): 730-740. doi: 10.3879/j.issn.1000-0887.2011.06.010
LUO Han-zhong, LIU Xue-wen, HUANG Xing-chun. Stability and Dispersion Analysis of Reproducing Kernel Collocation Method for Transient Dynamics[J]. Applied Mathematics and Mechanics, 2011, 32(6): 730-740. doi: 10.3879/j.issn.1000-0887.2011.06.010
Citation: LUO Han-zhong, LIU Xue-wen, HUANG Xing-chun. Stability and Dispersion Analysis of Reproducing Kernel Collocation Method for Transient Dynamics[J]. Applied Mathematics and Mechanics, 2011, 32(6): 730-740. doi: 10.3879/j.issn.1000-0887.2011.06.010

瞬态问题稳定性及弥散分析的无网格RKPM配点法研究

doi: 10.3879/j.issn.1000-0887.2011.06.010
基金项目: 交通部西部交通建设科技资助项目(2009318000046)
详细信息
    作者简介:

    罗汉中(1983- ),男,江西人,博士生(E-mail:lough_me@163.com);黄醒春(1957- ),男,广西人,教授(联系人.E-mail:huangxc@sjtu.edu.cn).

  • 中图分类号: O302

Stability and Dispersion Analysis of Reproducing Kernel Collocation Method for Transient Dynamics

  • 摘要: 介绍了基于强形式的RKPM配点法求解瞬态动力问题的算法,并提出了采用RKPM配点法,配合时间域中心差分求解二阶波动方程的稳定性评价方法,并通过数值算例验证了此方法的正确性.此评价方法可以方便有效地评估出实际计算时的临界时间步长.通过数值算例比较可知,实际算例的计算临界时间步长与本评价方法,所预测的临界时间步长结果非常接近.给出了如何合理地选择RKPM形函数支撑域的建议.最后与径向基函数配点法进行了对比研究.
  • [1] Gingold R A, Monaghan J J.Smoothed particle hydrodynamics: theory and application to nonspherical stars[J]. Royal Astronomical Society, Monthly Notices, 1977, 181:375-389.
    [2] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements[J]. Computational Mechanics, 1992, 10(5):307-318. doi: 10.1007/BF00364252
    [3] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2):229-256. doi: 10.1002/nme.1620370205
    [4] Melenk J M, Babuska I. The partition of unity finite element method: basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4):289-314. doi: 10.1016/S0045-7825(96)01087-0
    [5] Duarte C A, Oden J T. An h-p adaptive method using clouds[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4):237-262. doi: 10.1016/S0045-7825(96)01085-7
    [6] Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods[J]. International Journal for Numerical Methods in Fluids, 1995, 20(8/9):1081-1106. doi: 10.1002/fld.1650200824
    [7] Chen J S, Pan C H, Wu C T, Liu W K. Reproducing kernel particle methods for large deformation analysis of non-linear structures[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4):195-227. doi: 10.1016/S0045-7825(96)01083-3
    [8] Sukumar N, Moran B, Belytschko T. The natural element method in solid mechanics[J]. International Journal for Numerical Methods in Engineering, 1998, 43:839-887. doi: 10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
    [9] Atluri S N, Zhu T L. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics[J]. Computational Mechanics, 2000, 25(2/3):169-179. doi: 10.1007/s004660050467
    [10] Kansa E J. Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—Ⅰ surface approximations and partial derivatives[J]. Computers and Mathematics With Applications, 1990, 19(8/9):127-145.
    [11] Kansa E J. Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—Ⅱ solutions to parabolic, hyperbolic and elliptic partial differential equations[J]. Computers and Mathematics With Applications, 1990, 19(8/9):147-161.
    [12] Zhang X, Chen J S, Osher S. A multiple level set method for modeling grain boundary evolution of polycrystalline materials[J]. Interaction and Multiscale Mechanics, 2008, 1:178-191.
    [13] Belytschko T, Kronggaus Y, Organ D, Fleming M. Meshless methods: an overview and recent developments[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4):3-47. doi: 10.1016/S0045-7825(96)01078-X
    [14] 张雄,刘岩,马上. 无网格法的理论及应用[J].力学进展,2009, 39(1): 1-36. (ZHANG Xiong, LIU Yan, MA Shang. Meshfree methods and there applications[J]. Advances in Mechanics, 2009, 39(1):1-36. (in Chinese))
    [15] Liu G R. Meshfree Methods: Moving Beyond the Finite Element Method[M]. 2nd ed. CRC Press, 2009.
    [16] Zhang X, Song K Z, Lu M W, Liu X. Meshless methods based on collocation with radial basis function[J]. Computational Mechanics, 2000, 26(4):333-343. doi: 10.1007/s004660000181
    [17] 黄娟,张健,陈光淦.一类Schrdinger-Poisson型方程的稳定性[J]. 应用数学和力学,2009,30(11):1381-1386.(HUANG Juan, ZHANG Jiang, CHEN Guang-gin. Stability of Schrdinger-Poisson type equations[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30(11):1469-1474.)
    [18] Ye Z. A new finite element formulation for planar elastic deformation[J]. International Journal for Numerical Methods in Engineering, 1997, 40(14):2579-2591. doi: 10.1002/(SICI)1097-0207(19970730)40:14<2579::AID-NME174>3.0.CO;2-A
    [19] 朱合华,杨宝红,蔡永昌,徐斌. 无网格自然单元法在弹塑性分析中的应用[J]. 岩土力学,2004, 25(4):671-674. (ZHU He-hua, YANG Bao-hong, CAI Yong-chang, XU Bin. Application of meshless natural element method to elastoplastic analysis[J]. Rock and Soil Mechanics, 2004, 25(4):671-674. (in Chinese))
    [20] 熊渊博,龙述尧.用无网格局部Petrov-Galerkin方法分析Winkler弹性地基板[J]. 湖南大学学报(自然科学版), 2004, 31(4): 101-105. (XIONG Yuan-bo, LONG Shu-yao. An analysis of plates on the Winkler foundation with the meshless local Petrov-Galerkin method[J]. Journal of Hunan University (Natural Science), 2004, 31(4):101-105. (in Chinese))
    [21] 李树忱,程玉民.基于单位分解法的无网格数值流形方法[J].力学学报, 2004, 36(4): 496-500.(LI Shu-chen, CHENG Yu-min. Meshless numerical manifold method based on unit partition[J]. Acta Mechanica Sinica, 2004, 36(4):496-500. (in Chinese))
    [22] Hu H Y, Chen J S, Hu W. Error analysis of collocation method based on reproducing kernel approximation[J]. Numerical Methods for Partial Differential Equations, 2009, 27(3):554-580.
    [23] Hu H Y, Lai C K, Chen J S. A study on convergence and complexity of reproducing kernel particle method [J]. Interaction and Multiscale Mechanics, 2009, 2:295-319.
    [24] Lucy L. A numerical approach to testing the fission hypothesis[J]. The Astronomical Journal, 1977, 82(12):1013-1024. doi: 10.1086/112164
    [25] Monoghan J J. Why particle methods work[J]. SIAM Journal on Scientific and Statistical Computing, 1982, 3(4):422-433. doi: 10.1137/0903027
    [26] Monoghan J J. An introduction to SPH[J]. Computer Physics Communications, 1988, 48(1): 89-96. doi: 10.1016/0010-4655(88)90026-4
    [27] Randles P W, Libersky L D. Smoothed particle hydrodynamics: some recent improvements and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4): 375-408. doi: 10.1016/S0045-7825(96)01090-0
    [28] Liu W K, Jun S, Li S, Adee J, Belytschko B. Reproducing kernel particle methods for structural dynamics[J]. International Journal for Numerical Methods in Engineering, 1995, 38: 1655-1679. doi: 10.1002/nme.1620381005
    [29] Liu W K, Chen Y. Wavelet and multiple scale reproducing kernel particle methods[J]. International Journal for Numerical Methods in Fluids, 1995, 21(10):901-931. doi: 10.1002/fld.1650211010
    [30] Chen J S, Pan C, Roque M O L, Wang H P. A Lagrangian reproducing kernel particle method for metal forming analysis[J]. Computational Mechanics, 1998, 22(3):289-307. doi: 10.1007/s004660050361
    [31] LUO Han-zhong, CHEN Jiun-shyan, HU Hsin-yun, HUANG Xing-chun.Stability of radial basis collocation method for transient dynamics[J]. Journal of Shanghai Jiaotong University(Science), 2010, 15(5): 615-621. doi: 10.1007/s12204-010-1057-4
  • 加载中
计量
  • 文章访问数:  1678
  • HTML全文浏览量:  142
  • PDF下载量:  1054
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-21
  • 修回日期:  2011-04-13
  • 刊出日期:  2011-06-15

目录

    /

    返回文章
    返回