留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粘滑混合边界条件下平面边界前的Stokes流动

N·阿克塔 G·A·H·乔杜里 S·K·森

N·阿克塔, G·A·H·乔杜里, S·K·森. 粘滑混合边界条件下平面边界前的Stokes流动[J]. 应用数学和力学, 2011, 32(6): 746-753. doi: 10.3879/j.issn.1000-0887.2011.06.012
引用本文: N·阿克塔, G·A·H·乔杜里, S·K·森. 粘滑混合边界条件下平面边界前的Stokes流动[J]. 应用数学和力学, 2011, 32(6): 746-753. doi: 10.3879/j.issn.1000-0887.2011.06.012
N. Akhtar, G. A. H. Chowdhury, S. K. Sen. Stokes Flow Before a Plane Boundary With Mixed Stick-Slip Boundary Conditions[J]. Applied Mathematics and Mechanics, 2011, 32(6): 746-753. doi: 10.3879/j.issn.1000-0887.2011.06.012
Citation: N. Akhtar, G. A. H. Chowdhury, S. K. Sen. Stokes Flow Before a Plane Boundary With Mixed Stick-Slip Boundary Conditions[J]. Applied Mathematics and Mechanics, 2011, 32(6): 746-753. doi: 10.3879/j.issn.1000-0887.2011.06.012

粘滑混合边界条件下平面边界前的Stokes流动

doi: 10.3879/j.issn.1000-0887.2011.06.012
详细信息
  • 中图分类号: O351.2

Stokes Flow Before a Plane Boundary With Mixed Stick-Slip Boundary Conditions

  • 摘要: 对具有粘滑混合边界条件的平面边界,建立一个Stokes流动的一般性定理,利用双调和函数A与调和函数B,表示了3维Stokes流动的速度场和压力场.关于无滑动平面边界前Stokes流动的早期定理,成为该一般性定理的一个特例.进一步地,从一般性定理导出了一个推论,根据该Stokes流函数,给出了粘滑边界条件时刚性平面轴对称Stokes流动问题的解,得到了流体作用在边界上的牵引力和扭矩公式.给出了一个说明性的例子.
  • [1] 阿克塔 N,冉赫曼 F,森 S K. 平面边界前Stokes流动基本的奇异性[J]. 应用数学和力学,2004, 25(7): 729-734. (Akhtar N, Rahman F, Sen S K. Stokes flow due to fundamental singularities before a plane boundary[J]. Applied Mathematics and Mechanics(English Edition), 2004, 25(7): 799-805.)
    [2] Happel J, Brenner H. Low Reynolds Number Hydrodynamics[M]. 4th print. Dordrecht: Martinus Nijhoff Publishers, 1986: 71-77.
    [3] Collins W D. Note on a sphere theorem for the axisymmetric Stokes flow of a viscous fluid[J]. Mathematika, 1958, 5(2): 118-121. doi: 10.1112/S0025579300001431
    [4] Aderogba K. On Stokeslets in a two-fluid space[J]. Journal of Engineering Mathematics, 1976, 10(2): 143-151. doi: 10.1007/BF01535657
    [5] Padmavathi B S, Amaranath T, Nigam S D. Stokes flow past a sphere with mixed slip-stick boundary conditions[J]. Fluid Dynamics Research, 1993, 11(5): 229-234. doi: 10.1016/0169-5983(93)90113-O
    [6] Palaniappan D, Nigam S D, Amaranath T, Usha R. Lamb’s solution of Stokes’s equations: a sphere theorem[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1992, 45(1): 47-56. doi: 10.1093/qjmam/45.1.47
    [7] Schmitz R, Felderhof B U. Creeping flow about a sphere[J]. Physica A, 1978, 92(3/4): 423-437. doi: 10.1016/0378-4371(78)90141-3
    [8] Raja Sekhar G P, Tejeswara Rao K, Padmavathi B S, Amaranath T. Two-dimensional Stokes flows with slip-stick boundary conditions[J]. Mechanics Research Communications, 1995, 22(5): 491- 501. doi: 10.1016/0093-6413(95)00053-T
    [9] Palaniappan D, Daripa P. Interior Stokes flows with stick-slip boundary conditions[J]. Physica A, 2001, 297(1/2): 37-63.
    [10] Palaniappan D, Daripa P. Exterior Stokes flows with stick-slip boundary conditions[J]. Zeitschrift für Angewandte Mathematik und Physik, 2002, 53(2): 281-307. doi: 10.1007/s00033-002-8156-5
    [11] Basset A B. A Treatise on Hydrodynamics[M]. Vol 2. New York: Dover, 1961: 271.
    [12] Lamb H. Hydrodynamics[M]. 6th ed. New York, Dover: Dover Publications, 1945: 576, 597-604.
    [13] Batchelor G K. An Introduction to Fluid Dynamics[M]. London, N W: Cambridge University Press, 1967, 1: 600-602.
    [14] Sneddon I N. Elements of Partial Differential Equations[M]. Singapore: McGraw-Hill Book Co, 1985: 159.
    [15] Stimson M, Jeffery G B. The motion of two spheres in a viscous fluid[J]. Proceedings of the Royal Society of London, Series A, 1926, 111(757): 110-116. doi: 10.1098/rspa.1926.0053
    [16] Collins W D. A note on Stokes’s stream function for the slow steady motion of viscous fluid before plane and spherical boundaries[J]. Mathematika, 1954, 1(2): 125-130. doi: 10.1112/S0025579300000607
    [17] Spiegel M R. Theory and Problems of Advanced Calculus[M]. McGraw Hill, Inc, 1963: 260-261.
  • 加载中
计量
  • 文章访问数:  1869
  • HTML全文浏览量:  200
  • PDF下载量:  874
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-09
  • 修回日期:  2011-04-11
  • 刊出日期:  2011-06-15

目录

    /

    返回文章
    返回