留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机迭代算法的几乎必然T-稳定性及收敛性

张石生 王雄瑞 刘敏 朱浸华

张石生, 王雄瑞, 刘敏, 朱浸华. 随机迭代算法的几乎必然T-稳定性及收敛性[J]. 应用数学和力学, 2011, 32(6): 754-760. doi: 10.3879/j.issn.1000-0887.2011.06.013
引用本文: 张石生, 王雄瑞, 刘敏, 朱浸华. 随机迭代算法的几乎必然T-稳定性及收敛性[J]. 应用数学和力学, 2011, 32(6): 754-760. doi: 10.3879/j.issn.1000-0887.2011.06.013
ZHANG Shi-sheng, WANG Xiong-rui, LIU Min, ZHU Jin-hua. Almost Surely T-Stability and Convergence for Random Iterative Algorithms[J]. Applied Mathematics and Mechanics, 2011, 32(6): 754-760. doi: 10.3879/j.issn.1000-0887.2011.06.013
Citation: ZHANG Shi-sheng, WANG Xiong-rui, LIU Min, ZHU Jin-hua. Almost Surely T-Stability and Convergence for Random Iterative Algorithms[J]. Applied Mathematics and Mechanics, 2011, 32(6): 754-760. doi: 10.3879/j.issn.1000-0887.2011.06.013

随机迭代算法的几乎必然T-稳定性及收敛性

doi: 10.3879/j.issn.1000-0887.2011.06.013
详细信息
    作者简介:

    张石生(1934- ),男,云南曲靖人,教授(联系人.E-mail:changss@yahoo.cn).

  • 中图分类号: O177.91

Almost Surely T-Stability and Convergence for Random Iterative Algorithms

  • 摘要: 目的是在可分Banach 空间的框架下,研究某些类型的-弱压缩型的随机算子的Ishikawa-型及Mann-型随机迭代算法的几乎必然T-稳定性及收敛性.在适当的条件下,证明了该类随机算子的随机不动点的Bochner可积性以及这两类随机迭代算法的几乎必然T-稳定性及收敛性.
  • [1] Joshi M C, Bose R K. Some Topics in Nonlinear Functional Analysis[M].New York: Wiley Eastern Limited, 1985.
    [2] 张石生.不动点理论及应用[M]. 重庆:重庆出版社,1984.(ZHANG Shi-sheng. Fixed Point Theory and Applications[M]. Chongqing: Chongqing Publishing Press, 1984.(in Chinese))
    [3] Spacek A. Zufallige gleichungen[J]. Czechoslovak Math J, 1995, 5: 462-466.
    [4] Hans O. Random operator equations[C]Proceedings of 4th Berkeley Sympos Math Statist and Prob. Vol Ⅱ, part Ⅰ.California: University of California Press, 1961: 185- 202.
    [5] Itoh S. Random fixed point theorems with an application to random differential equations in banach spaces[J]. J Math Anal Appl, 1979, 67(2): 261-273. doi: 10.1016/0022-247X(79)90023-4
    [6] Chang S S, Cho Y J, Kim J K, Zhou H Y. Random Ishikawa iterative sequence with applications[J]. Stochastic Anal and Appl, 2005, 23(1): 69-77. doi: 10.1081/SAP-200044432
    [7] Beg I, Abbas M. Equivalence and stability of random fixed point iterative procedures[J]. J Appl Math Stoch Anal, 2006, 2006: 1-19, Article ID 23297.
    [8] Berinde V. On the convergence of the Ishikawa iteration in the class of quasi-contractive operators[J].Acta Math Univ Comenianae, 68(1), 2004, 119-126.
    [9] Rhoades B E. Fixed point iterations using infinite matrices[J]. Trans Amer Math Soc, 1974, 196: 161-176. doi: 10.1090/S0002-9947-1974-0348565-1
    [10] Rhoades B E. Some theorems on weakly contractive maps[J]. Nonlinear Anal, 2001, 47(4): 2683-2693. doi: 10.1016/S0362-546X(01)00388-1
    [11] Berinde V. On the stability of some fixed point procedures[J]. Bul Stiint Univ Baia Mare, Ser. B, Matematica-Informatica, 2002,18(1): 7-14.
    [12] Olatinwo M O. Some stability results for two hybrid fixed point iterative algorithms of Kirk-Ishikawa and Kirk-Mann type[J]. J Adv Math Studies, 2008, 1(1): 5-14.
    [13] Rhoades B E. Fixed point theorems and stability results for fixed point iteration procedures[J]. Indian J Pure Appl Math, 1990, 21(1): 1-9.
    [14] Rhoades B E. Fixed point theorems and stability results for fixed point iteration procedures Ⅱ[J]. Indian J Pure Appl Math, 1993, 24(11): 691-703.
    [15] Alber Ya I, Guerre-Delabriere S. Principles of weakly contractive maps in Hilbert spaces[C]Gohberg Yu Lyubich. New Result in Operator Theory,Advances and Appl, Vol 198. Basel, Switzerland: Birkhauser, 1997: 7-22.
  • 加载中
计量
  • 文章访问数:  1649
  • HTML全文浏览量:  128
  • PDF下载量:  832
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-24
  • 修回日期:  2011-04-08
  • 刊出日期:  2011-06-15

目录

    /

    返回文章
    返回