留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不变形双滴的热毛细迁移及相互作用

尹兆华 常磊 胡文瑞 高鹏

尹兆华, 常磊, 胡文瑞, 高鹏. 不变形双滴的热毛细迁移及相互作用[J]. 应用数学和力学, 2011, 32(7): 761-773. doi: 10.3879/j.issn.1000-0887.2011.07.001
引用本文: 尹兆华, 常磊, 胡文瑞, 高鹏. 不变形双滴的热毛细迁移及相互作用[J]. 应用数学和力学, 2011, 32(7): 761-773. doi: 10.3879/j.issn.1000-0887.2011.07.001
YIN Zhao-hua, CHANG Lei, HU Wen-rui, GAO Peng. Thermocapillary Migration and Interaction of Two Nondeformable Droplets[J]. Applied Mathematics and Mechanics, 2011, 32(7): 761-773. doi: 10.3879/j.issn.1000-0887.2011.07.001
Citation: YIN Zhao-hua, CHANG Lei, HU Wen-rui, GAO Peng. Thermocapillary Migration and Interaction of Two Nondeformable Droplets[J]. Applied Mathematics and Mechanics, 2011, 32(7): 761-773. doi: 10.3879/j.issn.1000-0887.2011.07.001

不变形双滴的热毛细迁移及相互作用

doi: 10.3879/j.issn.1000-0887.2011.07.001
基金项目: 中国科学院知识创新工程重要方向项目资助(KJCX2-YW-L08)
详细信息
    作者简介:

    尹兆华(1973),男,山东胶州人,副研究员,博士(联系人.Tel:+86-10-82544100;Fax:+86-10-82544097;E-mai:lzhaohua.yin@imech.ac.cn).

  • 中图分类号: O359+.1

Thermocapillary Migration and Interaction of Two Nondeformable Droplets

  • 摘要: 对微重力下不变形双滴的非定常热毛细迁移运动进行了数值模拟,采用了有限差分方法对动量方程和能量方程进行离散,使用波前追踪法捕捉运动的不变形液滴界面.研究显示双滴的排列方式对它们的迁移规律和相互作用影响很大,其中影响任一个液滴运动的最主要的因素是另一个液滴的存在所引起的温度场的扰动.
  • [1] Young N O, Goldstein J S, Block M J. The motion of bubbles in a vertical temperature gradient[J]. J Fluid Mech , 1959, 6(3): 350-356. doi: 10.1017/S0022112059000684
    [2] YIN Zhao-hua, GAO Peng, HU Wen-rui, CHANG Lei. Thermocapillary migration of nondeformable drops[J]. Phys Fluids, 2008, 20(8): 20082101.
    [3] Meyyappan M, Wilcos W R, Subramanian R S. The slow axisymmetric motion of two bubbles in a thermal gradient[J]. J Colloid Interface Sci, 1983, 94(1): 243-257. doi: 10.1016/0021-9797(83)90255-2
    [4] Meyyappan M, Subramanian R S. The thermocapillary motion of two bubbles oriented arbi-trarily relative to a thermal gradient[J]. J Colloid Interface Sci, 1984, 97(1): 291-294. doi: 10.1016/0021-9797(84)90295-9
    [5] Balasubramaniam R, Subramanian R S. Axisymmetric thermal wake interaction of two bubbles in a uniform temperature gradient at large Reynolds and Marangoni numbers[J]. Phys Fluids, 1999, 11(10): 2856-2864. doi: 10.1063/1.870144
    [6] Anderson J L. Droplet interactions in thermocapillary motion[J]. Int J Multiphase Flow, 1985, 11(6): 813-824. doi: 10.1016/0301-9322(85)90026-6
    [7] Keh H J, Chen S H. The axisymmetric thermocapillary motion of two fluid droplets[J]. Int J Multiphase Flow, 1990, 16(3): 515-527. doi: 10.1016/0301-9322(90)90079-X
    [8] Keh H J, Chen S H. Droplet interactions in axisymmetric thermocapillary motion[J]. J Colloid Interface Sci, 1992, 151(1): 1-16. doi: 10.1016/0021-9797(92)90233-C
    [9] Zhou H, Davis R H. Axisymmetric thermocapillary migration of two deformable viscous drops[J]. J Colloid Interface Sci, 1996, 181(1): 60-72. doi: 10.1006/jcis.1996.0356
    [10] Nas S, Tryggvason G. Thermocapillary interaction of two bubbles or drops[J]. Int J Multi-Phase Flow, 2003, 29(7): 1117 -1135. doi: 10.1016/S0301-9322(03)00084-3
    [11] Nas S, Muradoglu M, Tryggvason G. Pattern formation of drops in thermocapillary migration[J]. Int J Heat Mass Transfer, 2006, 49(13/14): 2265-2276. doi: 10.1016/j.ijheatmasstransfer.2005.12.009
    [12] Balasubramaniam B, Lacy C E, Woniak G, Subramanian R S. Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity[J]. Phys Fluids, 1996, 8(4): 872-880. doi: 10.1063/1.868868
    [13] Brady P T, Herrmann M, Lopez J M. Confined thermocapillary motion of a three-dimensional deformable drop[J]. Phys Fluids, 2011, 23(2): 022101. doi: 10.1063/1.3529442
    [14] GAO Peng. Numerical investigation of the drop thermocapillary migration[D]. PhD Thesis. Chinese Academy of Sciences, 2007.
    [15] Hick W M. On the motion of two spheres in a fluid[J]. Phil Trans Roy Soc, 1880, 171: 455-492. doi: 10.1098/rstl.1880.0013
    [16] Herman R A. On the motion of two spheres in fluid and allied problems[J]. Quart J Pure Appl Math, 1887, 22: 204-262.
    [17] Kaneda Y, Ishii K. The hydrodynamic interaction of two spheres moving in an unbounded fluid at small but finite Reynolds number[J]. J Fluid Mech, 1982, 124: 209-217. doi: 10.1017/S0022112082002468
    [18] Batchelor G K. An Introduction to Fluid Mechanics[M]. Cambridge: Cambridge University Press, 1967.
    [19] 吴望一. 流体力学[M]. 上册,下册.北京: 北京大学出版社,1982, 1983.(WU Wang-yi. Fluid Dynamics[M]. Beijing: Peking University Press, 1982, 1983. (in Chinese))
    [20] Happle J, Brenner H. Low Reynolds Number Hydrodynamics[M]. The Hague: Martinus Nijhoff Publishers, 1965(1st ed), 1973, 1983(reprint).
    [21] 严宗毅. 低雷诺数流理论[M]. 北京: 北京大学出版社,2002.(YAN Zong-yi. Theory of Low Reynolds Number Hydrodynamics[M]. Beijing: Peking University Press, 2002. (in Chinese))
    [22] Stimson M, Jeffery G B. The motion of two spheres in a viscous fluid[J]. Proc Roy Soc A, 1926, 111: 110. doi: 10.1098/rspa.1926.0053
    [23] Goldman A J, Cox R G, Brenner H. The slow motion of two identical arbitrarily oriented spheres through a viscous fluid[J]. Chem Eng Sci, 1966, 21(12): 1151 -1170. doi: 10.1016/0009-2509(66)85036-4
  • 加载中
计量
  • 文章访问数:  1508
  • HTML全文浏览量:  125
  • PDF下载量:  821
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-14
  • 修回日期:  2011-05-18
  • 刊出日期:  2011-07-15

目录

    /

    返回文章
    返回