留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扩展形式的修正的Kadomtsev-Petviashvili方程的多重峰波

A·M·瓦日瓦日

A·M·瓦日瓦日. 扩展形式的修正的Kadomtsev-Petviashvili方程的多重峰波[J]. 应用数学和力学, 2011, 32(7): 821-825. doi: 10.3879/j.issn.1000-0887.2011.07.006
引用本文: A·M·瓦日瓦日. 扩展形式的修正的Kadomtsev-Petviashvili方程的多重峰波[J]. 应用数学和力学, 2011, 32(7): 821-825. doi: 10.3879/j.issn.1000-0887.2011.07.006
Abdul-Majid Wazwaz. Multiple-Front Waves for Extended Form of Modified Kadomtsev-Petviashvili Equation[J]. Applied Mathematics and Mechanics, 2011, 32(7): 821-825. doi: 10.3879/j.issn.1000-0887.2011.07.006
Citation: Abdul-Majid Wazwaz. Multiple-Front Waves for Extended Form of Modified Kadomtsev-Petviashvili Equation[J]. Applied Mathematics and Mechanics, 2011, 32(7): 821-825. doi: 10.3879/j.issn.1000-0887.2011.07.006

扩展形式的修正的Kadomtsev-Petviashvili方程的多重峰波

doi: 10.3879/j.issn.1000-0887.2011.07.006
详细信息
  • 中图分类号: O175.29

Multiple-Front Waves for Extended Form of Modified Kadomtsev-Petviashvili Equation

  • 摘要: 研究修正的Kadomtsev-Petviashvili(mKP)方程的一个扩展形式.使用由Hereman和Nuseir提出的、一个可以信赖的、Hirota双线性法的简化形式.由该方程(这里称为mKP方程)直接导出多重峰波解.研究还表明,扩展项并不会破坏mKP方程的可积性.
  • [1] SUN Zhi-yuan, GAO Yi-tian, YU Xin, MENG Xiang-hua, LIU Ying. Inelastic interactions of the multiple-front waves for the modified Kadomtsev-Petviashvili equation in fluid dynamics, plasma physics and electrodynamics[J]. Wave Motion, 2009, 46(8): 511-521. doi: 10.1016/j.wavemoti.2009.06.014
    [2] Bo1 R, JI Lin. A new (2+1)-dimensional integrable equation[J]. Communications in Theoretical Physics, 2009, 51(1): 13-16. doi: 10.1088/0253-6102/51/1/03
    [3] Mulase M. Solvability of the super KP equation and a generalization of the Birkhoff decomposition[J]. Inventiones Mathematicae, 1988, 92(1): 1-46. doi: 10.1007/BF01393991
    [4] Ablowitz M J, Clarkson P A. Solitons Nonlinear Evolution Equations and Inverse Scattering[M]. Cambridge: Cambridge University Press, 1991.
    [5] Clarkson P A. The Painlevé property, a modified Boussinesq equation and a modified Kadomtsev-Petviashvili equation[J].Physica D: Nolinear Phenomena, 1986, 19(3): 447-450. doi: 10.1016/0167-2789(86)90071-0
    [6] WANG Song, TANG Xiao-yan, LOU Sen-yue. Soliton fission and fusion: Burgers equation and Sharma-Tasso-Olver equation[J]. Chaos, Solitons and Fractals, 2004, 21(1): 231-239. doi: 10.1016/j.chaos.2003.10.014
    [7] Das G C, Sarma J. Evolution of solitary waves in multicomponent plasmas[J]. Chaos, Solitons and Fractals, 1998, 9(6): 901-911. doi: 10.1016/S0960-0779(97)00170-7
    [8] Hirota R, Ito M. Resonance of solitons in one dimension[J]. Journal of Physical Society of Japan, 1983, 52(3): 744-748. doi: 10.1143/JPSJ.52.744
    [9] Hirota R. The Direct Method in Soliton Theory[M]. Cambridge: Cambridge University Press,2004.
    [10] Hietarinta J. A search for bilinear equations passing Hirota’s three-soliton condition—Ⅱ: mKdV-type bilinear equations[J]. Journal of Mathematical Physics, 1987, 28(9): 2094-2101. doi: 10.1063/1.527421
    [11] Hereman W, Nuseir A. Symbolic methods to construct exact solutions of nonlinear partial differential equations[J]. Mathematics and Computers in Simulation, 1997, 43(1): 13-27. doi: 10.1016/S0378-4754(96)00053-5
    [12] Wazwaz A M. Multiple kink solutions and multiple singular kink solutions for the (2+1)-dimensional Burgers equations[J]. Applied Mathematics Computation, 2008, 204(2): 817-823. doi: 10.1016/j.amc.2008.07.025
    [13] Wazwaz A M. Multiple soliton solutions and multiple singular soliton solutions for the (3+1)-dimensional Burgers equations[J]. Applied Mathematics Computation, 2008, 204(2): 942-948. doi: 10.1016/j.amc.2008.08.004
    [14] Wazwaz A M. Multiple kink solutions and multiple singular kink solutions for two systems of coupled Burgers’ type equations[J].Communications in Nonlinear Science and Numerical Simulations, 2009, 14(7): 2962-2970. doi: 10.1016/j.cnsns.2008.12.018
  • 加载中
计量
  • 文章访问数:  1655
  • HTML全文浏览量:  186
  • PDF下载量:  838
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-31
  • 修回日期:  2011-04-14
  • 刊出日期:  2011-07-15

目录

    /

    返回文章
    返回