留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热传导的微极固体和流体介质界面上波的传播

R·库玛 M·考尔 S·C·冉吉范西

R·库玛, M·考尔, S·C·冉吉范西. 热传导的微极固体和流体介质界面上波的传播[J]. 应用数学和力学, 2011, 32(7): 826-847. doi: 10.3879/j.issn.1000-0887.2011.07.007
引用本文: R·库玛, M·考尔, S·C·冉吉范西. 热传导的微极固体和流体介质界面上波的传播[J]. 应用数学和力学, 2011, 32(7): 826-847. doi: 10.3879/j.issn.1000-0887.2011.07.007
Rajneesh Kumar, Mandeep Kaur, S. C. Rajvanshi. Wave Propagation at an Interface of Heat Conducting Micropolar Solid and Fluid Media[J]. Applied Mathematics and Mechanics, 2011, 32(7): 826-847. doi: 10.3879/j.issn.1000-0887.2011.07.007
Citation: Rajneesh Kumar, Mandeep Kaur, S. C. Rajvanshi. Wave Propagation at an Interface of Heat Conducting Micropolar Solid and Fluid Media[J]. Applied Mathematics and Mechanics, 2011, 32(7): 826-847. doi: 10.3879/j.issn.1000-0887.2011.07.007

热传导的微极固体和流体介质界面上波的传播

doi: 10.3879/j.issn.1000-0887.2011.07.007
详细信息
  • 中图分类号: O345;O11

Wave Propagation at an Interface of Heat Conducting Micropolar Solid and Fluid Media

  • 摘要: 研究微极广义热弹性固体半空间和热传导微极流体半空间界面上波的传播.讨论微极广义热弹性固体半空间和热传导微极流体半空间之间平面界面上,斜向入射平面波的反射和透射现象.假设入射波穿过微极广义热弹性固体,射向平面界面后传播.得到了封闭形式的、不同反射和透射波的波幅比,它们是入射角、频率的函数,并为介质的弹性性质所影响.对一些特定的类型,显示出微极和热松弛对波幅比的影响.还从本文的研究中推演出一些早期工作的结果.
  • [1] Eringen A C. Simple microfluids[J]. International Journal of Engineering Science, 1964, 2(2): 205-217. doi: 10.1016/0020-7225(64)90005-9
    [2] Eringen A C. Theory of microfluids[J]. Journal of Applied Mathematics and Mechanics, 1966, 16(1): 1-18.
    [3] Ariman T, Sylvester N D, Turk M A. Microcontinuum fluid mechanics―a review[J]. International Journal of Engineering Science, 1973, 11(8): 905-930. doi: 10.1016/0020-7225(73)90038-4
    [4] Ariman T, Turk M A, Sylvester N D. Applications of microcontinuum fluid mechanics[J]. International Journal of Engineering Science, 1974, 12(4): 273-293. doi: 10.1016/0020-7225(74)90059-7
    [5] Riha P. On the theory of heat-conducting micropolar fluid with microtemperature[J]. Acta Mechanic, 1975, 23(1/2): 1-8. doi: 10.1007/BF01177664
    [6] Eringen A C, Kafadar C B. Polar field theories[C]Eringen A C. Continuum Physics. Vol 4. New York:Academic Press, 1976.
    [7] Brulin O. Linear micropolar media[C]Brulin O, Hsieh R K T. Mechanics of Micropolar Media. Singapore:World Scientific, 1982.
    [8] Aggarwal R S, Dhanapal C. Flow and heat transfer in a micropolar fluid past a flate plate with suction and heat sources[J]. International Journal of Engineering Science, 1988, 26(12): 1257-1266. doi: 10.1016/0020-7225(88)90045-6
    [9] Payne L E,Straughan B. Critical Rayleigh numbers for oscillatory and non linear convection in an isotropic thermomicropolar fluid[J]. International Journal of Engineering Science, 1989, 27(7): 827-836. doi: 10.1016/0020-7225(89)90048-7
    [10] Gorla R S R. Combined forced and free convection in the boundary layer flow of a micropolar fluid on a continuous moving vertical cylinder[J]. International Journal of Engineering Science, 1989, 27(1): 77-86. doi: 10.1016/0020-7225(89)90169-9
    [11] Eringen A C. Theory of micro-stretch and bubbly liquids[J]. International Journal of Engineering Science, 1990, 28(2): 133-143. doi: 10.1016/0020-7225(90)90063-O
    [12] Aydemir N U, Venart J E S. Flow of a thermomicropolar fluid with stretch[J]. International Journal of Engineering Science, 1990, 28 (12): 1211-1222. doi: 10.1016/0020-7225(90)90069-U
    [13] Yerofeyev V I, Soldatov I N. A shear surface wave at the interface of an elastic body and a micropolar liquid[J]. Journal of Applied Mathematics and Mechanics, 1999, 63(2): 277-281. doi: 10.1016/S0021-8928(99)00036-2
    [14] Yeremeyev V A, Zubov L M. The theory of elastic and viscoelastic micropolar liquids[J]. Journal of Applied Mathematics and Mechanics, 1999, 63(5): 755-767. doi: 10.1016/S0021-8928(99)00096-9
    [15] Hsia S Y, Cheng J W. Longitudinal plane waves propagation in elastic micropolar porous media[J]. Japanese Journal of Applied Physics, 2006, 45: 1743-1748. doi: 10.1143/JJAP.45.1743
    [16] Hsia S Y, Chiu S M, Su C C, Chen T H. Propagation of transverse waves in elastic micropolar porous semispaces[J]. Japanese Journal of Applied Physics, 2007, 46: 7399-7405. doi: 10.1143/JJAP.46.7399
    [17] Eringen A C. Linear theory of micropolar elasticity[J]. Journal of Applied Mathematics and Mechanics, 1966, 15: 909-923.
    [18] Biot M. Thermoelasticity and irreversible thermodynamics[J]. Journal of Applied Physics, 1956, 27(3): 240-253. doi: 10.1063/1.1722351
    [19] Lord H, Shulman Y. A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids, 1967, 15(5): 299-309. doi: 10.1016/0022-5096(67)90024-5
    [20] Muller I M. The coldness, a universal function in thermoelastic bodies[J]. Archive for Rational Mechanics and Analysis, 1971, 41(5): 319-332.
    [21] Green A E, Laws N. On the entropy production inequality[J]. Archive for Rational Mechanics and Analysis, 1972, 45(1): 47-53.
    [22] Green A E, Lindsay K A. Thermoelasticity[J]. Journal of Elasticity, 1972, 2(1): 1-7. doi: 10.1007/BF00045689
    [23] Suhubi E S. Thermoelastic solids[C] Eringen A C. Continuum Physics. 2. Part 2, Chapter 2. New York: Academic Press, 1975.
    [24] Tomar S K, Gogna M L. Reflection and refraction of a longitudinal microrotational wave at an interface between two micropolar elastic solids in welded contact[J]. Journal of Applied Mathematics and Mechanics, 1992, 30(11): 1637-1646.
    [25] Tomar S K, Gogna M L. Reflection and refraction of a longitudinal displacement wave at an interface between two micropolar elastic solids in welded contact[J]. Journal of the Acoustical Society of America, 1995, 97: 827-830.
    [26] Tomar S K, Gogna M L. Reflection and refraction of a coupled transverse and micro-rotational waves at an interface between two different micropolar elastic media in welded contact[J]. International Journal of Engineering Science,1995, 33(4): 485-496. doi: 10.1016/0020-7225(94)00077-8
    [27] Kumar R, Sharma N, Ram P. Reflection and transmission of micropolar elastic waves at an imperfect boundary[J]. Multidiscipline Modelling in Materials and Structures, 2008, 4(1): 15-36. doi: 10.1163/157361108783470388
    [28] Kumar R, Sharma N, Ram P. Interfacial imperfection on reflection and transmission of plane waves in anisotropic micropolar media[J]. Theoretical and Applied Fracture Mechanics, 2008, 49(3): 305-312. doi: 10.1016/j.tafmec.2008.02.007
    [29] Singh D, Tomar S K. Longitudinal waves at a micropolar fluid/solid interface[J]. Journal of Applied Mathematics and Mechanics, 2008, 45(1): 225-244.
    [30] Ciarletta M. Spatial decay estimates for heat conducting micropolar fluids[J]. Journal of Applied Mathematics and Mechanics, 2001, 39(6): 655-668.
    [31] Parfit V R, Eringen A C. Reflection of plane waves from the flat boundary of a micropolar elastic half space[J]. Journal of the Acoustical Society of America, 1969, 45(5): 1258-1272. doi: 10.1121/1.1911598
    [32] Dhaliwal R S, Singh A. Dynamic Coupled Thermoelasticity[M]. New Delhi, India: Hindustan Publication Corporation, 1980.
    [33] Singh B, Kumar R. Reflection of plane waves from the flat boundary of a micropolar generalized thermoelastic half-space[J]. Journal of Applied Mathematics and Mechanics, 1998, 36 (7/8): 865-890.
    [34] Schoenberg M. Transmission and reflection of plane waves at an elastic-viscoelastic interface[J]. Geophysics Journal of Royal Astronomical Society, 1971, 25 (1/3): 35-47. doi: 10.1111/j.1365-246X.1971.tb02329.x
  • 加载中
计量
  • 文章访问数:  1888
  • HTML全文浏览量:  223
  • PDF下载量:  680
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-16
  • 修回日期:  2011-05-09
  • 刊出日期:  2011-07-15

目录

    /

    返回文章
    返回