[1] |
Brenner S, Scott L. The Mathematical Theory of Finite Element Methods[M]. Berlin: Springer, 1994.
|
[2] |
Thomee V. Galerkin Finite Element Methods for Parabolic Problems[M]. Berlin: Springer, 1997.
|
[3] |
王烈衡,许学军.有限元方法的数学基础[M].北京:科学出版社,2004.(WANG Lie-heng, XU Xue-jun. The Mathematical Foundation of Finite Element Methods[M]. Beijing: Science Press, 2004.(in Chinese))
|
[4] |
余德浩,汤华中.微分方程数值解法[M].北京:科学出版社,2003.(YU De-hao, TANG Hua-zhong. Numerical Solution of Differential Equations[M]. Beijing: Science Press, 2003.(in Chinese))
|
[5] |
Reed W H, Hill T R. Triangular mesh methods for the neutron transport equation[R]. Tech Report LA-UR-73-479. Los Alamos Scientific Laboratory, 1973.
|
[6] |
Delfour M, Hager W, Trochu F. Discontinuous Galerkin methods for ordinary differential equations[J]. Math Comp, 1981, 36(154): 455-473. doi: 10.1090/S0025-5718-1981-0606506-0
|
[7] |
Aziz A K, Monk P. Continuous finite elements in space and time for the heat equation[J]. Math Comp, 1989, 52(186): 255-274. doi: 10.1090/S0025-5718-1989-0983310-2
|
[8] |
Cockburn B, LIN S Y, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws 3: one-dimensional systems[J]. J Comput Phy, 1989, 84: 90-113. doi: 10.1016/0021-9991(89)90183-6
|
[9] |
Johnson C, Pitkaranta J. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation[J]. Math Comp, 1986, 46(173): 1-26. doi: 10.1090/S0025-5718-1986-0815828-4
|
[10] |
陈传淼. 有限元超收敛构造理论[M]. 长沙: 湖南科技出版社, 2001.(CHEN Chuan-miao. Structure Theory of Superconvergence for Finite Elements[M]. Changsha: Hunan Science and Techniques Press, 2001.(in Chinese))
|
[11] |
陈传淼. 科学计算概论[M]. 北京: 科学出版社, 2007.(CHEN Chuan-miao. Introduction to Science Computations[M]. Beijing: Science Press, 2007. (in Chinese))
|
[12] |
冯康.冯康全集[M]. 第二卷. 北京: 国防工业出版社, 1995.(FENG Kang. Collection Works of Feng Kang[M]. Vol 2. Beijing: National Defence Industry Press, 1995.(in Chinese))
|
[13] |
冯康, 秦孟兆. 哈密尔顿的辛几何算法[M]. 杭州:浙江科学技术出版社. 2003.(FENG Kang, QING Meng-zhao. Sympletic Geometric Algorithms for Hamilton System[M]. Hangzhou: Zhejiang Science and Techniques Press, 2003.(in Chinese))
|
[14] |
Hairer E, Lubich C, Wanner G. Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations[M]. Berlin: Springer, 2003.
|
[15] |
TANG Qiong, CHEN Chuan-miao. Energy conservation and symplectic properties of continuous finite element methods for Hamiltonian systems[J]. Appl Math Comput, 2006, 181(2): 1357-1368. doi: 10.1016/j.amc.2006.03.004
|
[16] |
CHEN Chuan-miao, TANG Qiong, HU Shu-fang. Finite element method with superconvergence for nonlinear Hamilton system[J]. J Comp Math, 2011, 29(2):167-184.
|