留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗血管生成治疗抑制实体肿瘤细胞生长的数值模拟:应用血管生成与肿瘤生长的耦合数学模型

蔡彦 吴洁 许世雄 龙泉 姚伟

蔡彦, 吴洁, 许世雄, 龙泉, 姚伟. 抗血管生成治疗抑制实体肿瘤细胞生长的数值模拟:应用血管生成与肿瘤生长的耦合数学模型[J]. 应用数学和力学, 2011, 32(10): 1199-1207. doi: 10.3879/j.issn.1000-0887.2011.10.006
引用本文: 蔡彦, 吴洁, 许世雄, 龙泉, 姚伟. 抗血管生成治疗抑制实体肿瘤细胞生长的数值模拟:应用血管生成与肿瘤生长的耦合数学模型[J]. 应用数学和力学, 2011, 32(10): 1199-1207. doi: 10.3879/j.issn.1000-0887.2011.10.006
CAI Yan, WU Jie, XU Shi-xiong, LONG Quan, YAO Wei. Numerical Simulation of the Inhibiting Effects on Solid Tumour Cells in Anti-Angiogenic Therapy: an Application of Coupled Mathematical Model of Angiogenesis With Tumour Growth[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1199-1207. doi: 10.3879/j.issn.1000-0887.2011.10.006
Citation: CAI Yan, WU Jie, XU Shi-xiong, LONG Quan, YAO Wei. Numerical Simulation of the Inhibiting Effects on Solid Tumour Cells in Anti-Angiogenic Therapy: an Application of Coupled Mathematical Model of Angiogenesis With Tumour Growth[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1199-1207. doi: 10.3879/j.issn.1000-0887.2011.10.006

抗血管生成治疗抑制实体肿瘤细胞生长的数值模拟:应用血管生成与肿瘤生长的耦合数学模型

doi: 10.3879/j.issn.1000-0887.2011.10.006
基金项目: 国家自然科学基金资助项目(1037202610772051);上海市重点学科建设资助项目(B112)
详细信息
    作者简介:

    蔡彦(1984- ),女,安徽安庆人,博士生;许世雄(联系人.Tel:+86-21-65643813;E-mail:xusx@hotmail.com).

  • 中图分类号: R318.01;TB115

Numerical Simulation of the Inhibiting Effects on Solid Tumour Cells in Anti-Angiogenic Therapy: an Application of Coupled Mathematical Model of Angiogenesis With Tumour Growth

  • 摘要: 为研究抗血管生成因子angiostatin和抗血管生成药物endostatin对肿瘤血管生成和肿瘤细胞的抑制作用,建立耦合肿瘤血管生长、肿瘤生长和血液灌注的数学模型.模拟结果显示抗血管生成因子angiostatin和抗血管生成药物endostatin可明显抑制血管生成和减少肿瘤细胞数量,从而起到改善肿瘤组织内部异常微环境的作用.模型可作为肿瘤抗血管生成治疗的一种理论研究.
  • [1] Folkman J. Tumor angiogenesis: therapeutic implication[J]. New England Journal of Medicine, 1971, 285(17): 1182-1186. doi: 10.1056/NEJM197111182852108
    [2] Anderson A R A, Chaplain M A J. Continuous and discrete mathematical models of tumor-induced angiogenesis[J]. Bulletin of Mathematical Biology, 1998, 60(5): 857-900. doi: 10.1006/bulm.1998.0042
    [3] CAI Yan, Gulnar K, ZHANG Hong-yi, CAO Jin-feng, XU Shi-xiong, LONG Quan. Numerical simulation of tumor-induced angiogenesis influenced by the extracellular matrix mechanical environment[J]. Acta Mechanica Sinica, 2009, 25(6): 889-895. doi: 10.1007/s10409-009-0301-3
    [4] Jiang Y, Pjesivac-Grbovic J, Cantrell C, Freyer J P. A multiscale model for avascular tumor growth[J]. Biophysical Journal, 2005, 89(6): 3884-3894. doi: 10.1529/biophysj.105.060640
    [5] Delsanto P P, Condat C A, Pugno N, Gliozzi A S, Griffa M. A multilevel approach to cancer growth modeling[J]. Journal of Theoretical Biology, 2008, 250(1): 16-24. doi: 10.1016/j.jtbi.2007.09.023
    [6] Alarcón T, Owen M R, Byrne H M, Maini P K. Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy[J]. Computational and Mathematical Methods in Medicine, 2006, 7(2/3): 85-119. doi: 10.1080/10273660600968994
    [7] Zheng X, Wise S M, Cristini V. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method[J]. Bulletin of Mathematical Biology, 2005, 67(2): 211-259. doi: 10.1016/j.bulm.2004.08.001
    [8] Hogea C S, Murray B T, Sethian J A. Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method[J]. Journal of Mathematical Biology, 2006, 53(1): 86-134. doi: 10.1007/s00285-006-0378-2
    [9] Macklin P, Lowengrub J. Nonlinear simulation of the effect of microenvironment on tumor growth[J]. Journal of Theoretical Biology, 2007, 245(4): 677-704. doi: 10.1016/j.jtbi.2006.12.004
    [10] Welter M, Rieger H. Physical determinants of vascular network remodeling during tumor growth[J]. European Physical Journal E, 2010, 33(2): 149-163. doi: 10.1140/epje/i2010-10611-6
    [11] Welter M, Bartha K, Rieger H. Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor[J]. Journal of Theoretical Biology, 2008, 250(2): 257-280. doi: 10.1016/j.jtbi.2007.09.031
    [12] Fukumura D, Jain R K. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization[J]. Microvascular Research, 2007, 74(2/3): 72-84. doi: 10.1016/j.mvr.2007.05.003
    [13] CAI Yan, XU Shi-xiong, WU Jie, LONG Quan. Coupled modeling of tumour angiogenesis, tumour growth and blood perfusion[J]. Journal of Theoretical Biology, 2011, 279(1): 90-101. doi: 10.1016/j.jtbi.2011.02.017
    [14] 高昊,许世雄,蔡颖, Collins M W. 肿瘤血管生成的二维数值模拟[J]. 力学季刊, 2005, 26(3): 468-471. (GAO Hao, XU Shi-xiong, CAI Ying, Collins M W. Two dimensional mathematical models of tumor-induced angiogenesis[J]. Chinese Quarterly of Mechanics, 2005, 26(3): 468-471. (in Chinese))
    [15] Anderson A R A. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion[J]. Mathematical Medicine and Biology, 2005, 22(2): 163-186. doi: 10.1093/imammb/dqi005
    [16] Duval H, Harris M, Li Jia, Johnson N, Print C. New insights into the function and regulation of endothelial cell apoptosis[J]. Angiogenesis, 2003, 6(3): 171-183. doi: 10.1023/B:AGEN.0000021390.09275.bc
    [17] WU Jie, XU Shi-xiong, LONG Quan, Collins M W, Konig C S, ZHAO Gai-ping, JIANG Yu-ping, Padhani A R. Coupled modeling of blood perfusion in intravascular, interstitial spaced in tumor microvasculature[J]. Journal of Biomechanics, 2008, 41(5): 996-1004. doi: 10.1016/j.jbiomech.2007.12.008
    [18] 蔡彦,吴洁,古娜,张洪一,曹金凤,许世雄,龙泉,柯林斯. 抗血管生成药物Endostatin作用下实体肿瘤血管生成的数值模拟:考虑基质力学环境及血管生成抑素的影响[J]. 应用数学和力学, 2009, 30(10): 1165-1172. (CAI Yan, WU Jie, Gulnar K, ZHANG Hong-yi, CAO Jin-feng, XU Shi-xiong, LONG Quan, Collins M W. Numerical simulation of tumor angiogenesis under the effect of Endostatin: considering mechanical environment in matrix and inhibiting effect of anti-angionic factor[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(10): 1247-1254.)
    [19] Huber P E, Bischof M, Jenne J, Heiland S, Peschke P, Saffrich R, Grone H J, Debus J, Lipson K E, Abdollahi A. Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chometherapy[J]. Cancer Research, 2005, 65(1): 3643-3655. doi: 10.1158/0008-5472.CAN-04-1668
    [20] Willett C G, Boucher Y, Tomaso E, Duda D G, Munn L L, Tong R T, Chung D C, Sahani D V, Kalva S P, Kozin S V, Mino M, Cohen K S, Scadden D T, Hartford A C, Fischman A J, Clark J W, Ryan D P, Zhu A X, Blaszkowsky L S, Chen H X, Shellito P C, Lauwers G Y, Jain R K. Direct evidence that the anti-VEGF antibody Bevacizumab has anti-vascular effects in human rectal cancer[J]. Nature Medicine, 2004, 10(2): 145-147. doi: 10.1038/nm988
  • 加载中
计量
  • 文章访问数:  1505
  • HTML全文浏览量:  97
  • PDF下载量:  864
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-14
  • 修回日期:  2011-06-14
  • 刊出日期:  2011-10-15

目录

    /

    返回文章
    返回