留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维横观各向同性厚板在空间变化热源及体力作用下的动力学响应

M·伊斯兰 S·H·马利克 M·卡诺利亚

M·伊斯兰, S·H·马利克, M·卡诺利亚. 二维横观各向同性厚板在空间变化热源及体力作用下的动力学响应[J]. 应用数学和力学, 2011, 32(10): 1226-1240. doi: 10.3879/j.issn.1000-0887.2011.10.008
引用本文: M·伊斯兰, S·H·马利克, M·卡诺利亚. 二维横观各向同性厚板在空间变化热源及体力作用下的动力学响应[J]. 应用数学和力学, 2011, 32(10): 1226-1240. doi: 10.3879/j.issn.1000-0887.2011.10.008
Mohsin Islam, Sadek Hossain Mallik, Mridula Kanoria. Study of Dynamic Response in a Two Dimensional Transversely Isotropic Thick Plate With Spatially Varying Heat Sources and Body Forces[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1226-1240. doi: 10.3879/j.issn.1000-0887.2011.10.008
Citation: Mohsin Islam, Sadek Hossain Mallik, Mridula Kanoria. Study of Dynamic Response in a Two Dimensional Transversely Isotropic Thick Plate With Spatially Varying Heat Sources and Body Forces[J]. Applied Mathematics and Mechanics, 2011, 32(10): 1226-1240. doi: 10.3879/j.issn.1000-0887.2011.10.008

二维横观各向同性厚板在空间变化热源及体力作用下的动力学响应

doi: 10.3879/j.issn.1000-0887.2011.10.008
详细信息
  • 中图分类号: O343.6

Study of Dynamic Response in a Two Dimensional Transversely Isotropic Thick Plate With Spatially Varying Heat Sources and Body Forces

  • 摘要: 研究热源和体力作用下的横观各向同性厚板的二维问题,板的上表面无应力作用,但有规定的表面温度作用;板的下表面置于刚性基础之上,并处于绝热状态.采用Green和Naghdi提出的广义热弹性理论,通过Laplace和Fourier双重变换,在Laplace-Fourier变换域中,得到位移和温度场的控制方程.数值求解双重变换的逆变换,采用一个基于Fourier级数展开的方法,数值地求解Laplace变换的逆变换.对材料镁(Mg)进行数值计算,并用图形表示其结果.推演出各向同性材料铜(Cu)的数值结果,并用图形与横观各向同性材料镁进行比较.同时研究了体力的影响.
  • [1] Chadwick P. Thermoelasticity,the dynamic theory[C]Sneddon I N, Hill R. Progress in Solid Mechanics. Vol Ⅰ. Amsterdam: North-Holland, 1960: 263-368.
    [2] Nowacki W. Thermoelasticity[M]. Oxford:Pergamon Press, 1962.
    [3] Nowacki W. Dynamic Problems of Thermoelasticity[M]. Leyden: Noordhoff International Publishing, 1975.
    [4] Lord H, Shulman Y. A generalized dynamic theory of thermoelasticity[J]. J Mech Phys Solids, 1967, 15(5):299-309. doi: 10.1016/0022-5096(67)90024-5
    [5] Green A E, Lindsay K A. Thermoelasticity[J]. J Elasticity, 1972, 2(1): 1-7. doi: 10.1007/BF00045689
    [6] Chandrasekharaiah D S. Thermoelasticity with second sound[J]. Appl Mech Rev, 1986, 39(3): 355-376. doi: 10.1115/1.3143705
    [7] Chandrasekharaiah D S. A note on the uniqueness of solution in the theory of thermoelasticity without energy dissipation[J]. J Elasticity, 1996, 43(3): 279-283. doi: 10.1007/BF00042504
    [8] Chandrasekharaiah D S. A uniqueness theorem in the theory of thermoelasticity without energy dissipation[J]. J Thermal Stresses, 1996, 19(3): 267-272. doi: 10.1080/01495739608946173
    [9] Chandrasekharaiah D S. One dimensional wave propagation in the linear theory of thermoelasticity without energy dissipation[J]. J Thermal Stresses, 1996, 19(8): 695-710. doi: 10.1080/01495739608946202
    [10] Chandrasekharaiah D S,Srinath K S. Thermoelastic interactions without energy dissipation due to a point heat sources[J]. J Elasticity, 1998, 50(2): 97-108. doi: 10.1023/A:1007412106659
    [11] Sherief H H. On uniqueness and stability in generalized thermoelasticity[J]. Quart Appl Math, 1987,45: 773-778.
    [12] Ignaczak J. Uniqueness in generalized thermoelasticity[J]. J Thermal Stresses, 1979, 2(2): 171-175. doi: 10.1080/01495737908962399
    [13] Ignaczak J. A note on uniqueness in thermoelasticity with one relaxation time[J]. J Thermal Stresses, 1982, 5(3/4): 257-263. doi: 10.1080/01495738208942149
    [14] Ignaczak J. Generalized thermoelasticity and its applications[C]Hetnarski R B. Thermal Stresses.Chapter 4. Vol Ⅲ. Oxford: Elsevier, 1989.
    [15] Ackerman C C, Guyer R A. Temperature pulses in dielectric solids[J]. Ann Phys, 1968, 50(1): 128-185. doi: 10.1016/0003-4916(68)90320-5
    [16] Jackson H E,Walker C T, McNelly T F. Second sound in NaF[J]. Phys Rev Lett, 1970, 25(1): 26-28. doi: 10.1103/PhysRevLett.25.26
    [17] Jackson H E, Walker C T. Thermal conductivity, second sound, and phonon-phonon interactions in NaF[J]. Phys Rev, 1971, 3(4): 1428-1439. doi: 10.1103/PhysRevB.3.1428
    [18] Rogers S J. Transport of heat and approach to second sound in some isotopically pure Alkali-Halide crystals[J]. Phys Rev, 1971, 3(4): 1440-1457. doi: 10.1103/PhysRevB.3.1440
    [19] Narayanmurti V, Dynes R C. Observation of second sound in bismuth[J]. Phys Rev Lett, 1972, 28(22): 1461-1465. doi: 10.1103/PhysRevLett.28.1461
    [20] Green A E, Naghdi P M. A re-examination of the basic results of thermomechanics[J]. Proc Roy Soc London Ser A, 1991, 432: 171-194. doi: 10.1098/rspa.1991.0012
    [21] Green A E, Naghdi P M. On undamped heat waves in an elastic solid[J]. J Thermal Stresses,1992, 15(2): 252-264.
    [22] Green A E, Naghdi P M. Thermoelasticity without energy dissipation[J]. J Elasticity, 2006, 31(3): 189-208.
    [23] Mallik S H, Kanoria M. Effect of rotation on thermoelastic interaction with and without energy dissipation in an unbounded medium due to heat sources—an eigenvalue approach[J]. Far East J Appl Math, 2006, 23(2):147-167.
    [24] Roychoudhuri S K, Dutta P S. Thermoelastic interaction without energy dissipation in an infinite solid with distributed periodically varying heat sources[J]. Int J Solids Structures, 2005, 42(14): 4192-4203. doi: 10.1016/j.ijsolstr.2004.12.013
    [25] Mallik S H, Kanoria M. A two dimensional problem for a transversely isotropic generalized thermoelasticitic thick plate with spatially varying heat source[J]. Euro J Mech /A Solids, 2008, 27(4): 607-621. doi: 10.1016/j.euromechsol.2007.09.002
    [26] Mallik S H, Kanoria M. A two dimensional problem in generalized thermoelasticity for a rotating orthotropic infinite medium with heat sources[J].Indian J Math, 2007, 49(1): 47-70.
    [27] Mallik S H, Kanoria M. Generalized thermoelastic functionally graded solid with a periodically varying heat source[J]. Int J Solids Structures, 2007, 44(22/23): 7633-7645. doi: 10.1016/j.ijsolstr.2007.05.001
    [28] Banik S, Mallik S H, Kanoria M. Thermoelastic interaction with energy dissipation in an infinite solid with distributed periodically varying heat sources[J]. Int J Pure Appl Math, 2007, 34(2): 231-245.
    [29] Bondyopadhyay N, Roychoudhuri S K.Thermoelastic wave propagation without energy dissipation in an elastic half space[J]. Bull Cal Math Soc, 2005, 97(6): 489-502.
    [30] Verma K L, Hasebe N. Wave propagation in transversely isotropic plates in generalized thermoelasticity[J]. Arch Appl Math, 2002, 72(6/7): 470-482. doi: 10.1007/s00419-002-0215-z
    [31] Honig G, Hirdes U. A method for the numerical inversion of the Laplace transform[J]. J Comp Appl Math, 1984, 10(1): 113-132. doi: 10.1016/0377-0427(84)90075-X
    [32] Dhaliwal R S, Singh A. Dynamic Coupled Thermoelasticity[M]. Delhi: Hindustan Pub, 1980.
    [33] El-Maghraby N M. Two dimensional problem in generalized thermoelasticity with heat sources[J]. J Thermal Stresses, 2004, 27(3): 227-239. doi: 10.1080/01495730490264358
  • 加载中
计量
  • 文章访问数:  1391
  • HTML全文浏览量:  85
  • PDF下载量:  729
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-29
  • 修回日期:  2011-05-04
  • 刊出日期:  2011-10-15

目录

    /

    返回文章
    返回