留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

残余界面应力对粒子填充热弹性纳米复合材料有效热膨胀系数的影响

黄汝超 陈永强

黄汝超, 陈永强. 残余界面应力对粒子填充热弹性纳米复合材料有效热膨胀系数的影响[J]. 应用数学和力学, 2011, 32(11): 1283-1293. doi: 10.3879/j.issn.1000-0887.2011.11.003
引用本文: 黄汝超, 陈永强. 残余界面应力对粒子填充热弹性纳米复合材料有效热膨胀系数的影响[J]. 应用数学和力学, 2011, 32(11): 1283-1293. doi: 10.3879/j.issn.1000-0887.2011.11.003
HUANG Ru-chao, CHEN Yong-qiang. Effects of Residual Interface Stress on Effective Thermal Expansion Coefficient of Particle-Filled Composite[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1283-1293. doi: 10.3879/j.issn.1000-0887.2011.11.003
Citation: HUANG Ru-chao, CHEN Yong-qiang. Effects of Residual Interface Stress on Effective Thermal Expansion Coefficient of Particle-Filled Composite[J]. Applied Mathematics and Mechanics, 2011, 32(11): 1283-1293. doi: 10.3879/j.issn.1000-0887.2011.11.003

残余界面应力对粒子填充热弹性纳米复合材料有效热膨胀系数的影响

doi: 10.3879/j.issn.1000-0887.2011.11.003
基金项目: 国家自然科学基金资助项目(10602002;10932001);973资助项目(2010CB731503)
详细信息
    作者简介:

    黄汝超(1984- ),男,山东人,博士生(E-mail:hrchero@yahoo.com.cn);陈永强(1973- ),男,山东人,副教授,博士(联系人.E-mail:chenyq@pku.edu.cn).

  • 中图分类号: O343

Effects of Residual Interface Stress on Effective Thermal Expansion Coefficient of Particle-Filled Composite

  • 摘要: 根据黄筑平等人提出的基于“3个构形”的表/界面能理论,研究了热弹性纳米复合材料的有效性质,重点讨论了残余界面应力对纳米尺度夹杂填充的热弹性复合材料有效热膨胀系数的影响.首先,给出了由第一类Piola-Kirchhoff界面应力表示的热弹性界面本构关系和Lagrange描述下的Young-Laplace方程;其次,采用Hashin复合球作为代表性体积单元,推导了在参考构形下复合球内部由残余界面应力诱导的残余弹性场,并进一步计算了从参考构形到当前构形的变形场;最后,基于以上计算得到了热弹性复合材料有效体积模量和有效热膨胀系数的解析表达式.研究表明,残余表/界面应力对复合材料的热膨胀系数有重要影响.
  • [1] Mura T. Micromechanics of Defects in Solids[M]. Dordrecht: Martinus Nijhoff, 1987.
    [2] Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Materials[M]. Amsterdam: Elsevier, 1993.
    [3] Milton G W. The Theory of Composites[M]. Cambridge: Cambridge University Press, 2002.
    [4] Torquato S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties[M]. New York: Springer, 2002.
    [5] Buryachenko V A. Multiparticle effective field and related methods in micromechanics of composite materials[J]. Appl Mech Review, 2001, 54(1): 1-47. doi: 10.1115/1.3097287
    [6] 胡更开, 郑泉水, 黄筑平. 复合材料有效弹性性质分析方法[J]. 力学进展, 2001, 31(3):361-393.(HU Geng-kai, ZHENG Quan-shui, HUANG Zhu-ping. Micromechanics methods for effective elastic properties of composite materials[J]. Advances in Mechanics, 2001, 31(3):361-393.(in Chinese))
    [7] Levin V M. Thermal expansion coefficients of heterogeneous materials[J]. Mekhanika Tverdogo Tela,1967,2(1):88-94.
    [8] Ibach H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures[J]. Surface Sci Rep, 1997, 29(5/6): 193-263.
    [9] Steigmann D J, Ogden R W. Elastic surface-substrate interactions[J].Pro R Soc Lond A, 1999, 455(1982): 437-474. doi: 10.1098/rspa.1999.0320
    [10] Haiss W. Surface stress of clean and adsorbate-covered solids[J]. Rep Prog Phys, 2001, 64(5):591-648. doi: 10.1088/0034-4885/64/5/201
    [11] Müller P, Saúl A. Elastic effects on surface physics[J]. Surf Sci Rep, 2004, 54(5/8):157-258. doi: 10.1016/j.surfrep.2004.05.001
    [12] Fried E, Gurtin M E. A unified treatment of evolving interfaces accounting for small deformations and atomic transport with emphasis on grain-boundaries and epitaxy[J]. Adv Appl Mech, 2004, 40:1-177. doi: 10.1016/S0065-2156(04)40001-5
    [13] Murdoch A I. Some fundamental aspects of surface modeling[J]. J Elasticity, 2005, 80(1/3):33-52. doi: 10.1007/s10659-005-9024-2
    [14] DUAN Hui-ling, WANG Jian-xiang, HUANG Zhu-ping, Karihaloo B L. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress[J]. J Mech Phys Solids, 2005, 53(7):1574-1596. doi: 10.1016/j.jmps.2005.02.009
    [15] Sharma P, Wheeler L T. Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension[J]. J Appl Mech, 2007, 74(3): 447-454. doi: 10.1115/1.2338052
    [16] Chen T Y, Dvorak G J, Yu C C. Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal mechanical connections[J]. Int J Solids Struct, 2007, 44(3/4): 941-955. doi: 10.1016/j.ijsolstr.2006.05.030
    [17] DUAN Hui-ling, Karihaloo B L. Thermo-elastic properties of heterogeneous materials with imperfect interfaces: generalized Levin’s formula and Hill’s connections [J]. J Mech Phys Solids, 2007, 55(5):1036-1052. doi: 10.1016/j.jmps.2006.10.006
    [18] SUN Li, WU Yi-ming, HUANG Zhu-ping, WANG Jian-xiang. Interface effect on the effective bulk modulus of a particle-reinforced composite[J]. Acta Mech Sinica, 2004, 20(6): 676-679. doi: 10.1007/BF02485873
    [19] HUANG Zhu-ping, WANG Jian-xiang. A theory of hyperelasticity of multi-phase media with surface/interface energy effect[J]. Acta Mech, 2006, 182(3/4):195-210. doi: 10.1007/s00707-005-0286-3
    [20] HUANG Zhu-ping, SUN Li. Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis[J]. Acta Mech, 2007, 190(1/4):151-163. doi: 10.1007/s00707-006-0381-0
    [21] HUANG Zhu-ping, WANG Zhi-qiao, ZHAO Ya-pu, WANG Jian-xiang. Influence of particle-size distribution on effective properties of nanocomposites[C]Advances in Heterogeneous Materials Mechanics (ICHMM-2008), Pennsylvania: Destech Publications, 2008: 925-932.
    [22] HUANG Zhu-ping. Erratum to: size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis[J]. Acta Mech, 2010, 215(1/4):363-364. doi: 10.1007/s00707-010-0385-7
    [23] HUANG Zhu-ping, WANG Jian-xiang. Erratum to: a theory of hyperelasticity of multi-phase media with surface/interface energy effect [J]. Acta Mech, 2010, 215(1/4): 365-366. doi: 10.1007/s00707-010-0384-8
    [24] CHEN Huan, HU Geng-kai, HUANG Zhu-ping. Effective moduli for micropolar composite with interface effect[J]. Int J Solids Struct, 2007, 44(25/26): 8106-8118. doi: 10.1016/j.ijsolstr.2007.06.001
    [25] WANG Zhi-qiao, ZHAO Ya-pu, HUANG Zhu-ping. The effects of surface tension on the elastic properties of nano structures[J]. Int J Eng Sci, 2010, 48(2): 140-150. doi: 10.1016/j.ijengsci.2009.07.007
    [26] Park H S, Klein P A. Surface stress effects on the resonant properties of metal nanowires: the importance of finite deformation kinematics and the impact of the residual surface stress[J]. J Mech Phys Solids, 2008, 56(11): 3144-3166. doi: 10.1016/j.jmps.2008.08.003
    [27] Park H S, Klein P A. Boundary condition and surface stress effects on the resonant properties of metal nanowires[C]Advances in Heterogeneous Materials Mechanics(ICHMM-2008), Pennsylvania: Destech Publications, 2008: 89-96.
    [28] 黄筑平. 连续介质力学基础[M]. 北京: 高等教育出版社, 2003. (HUANG Zhu-ping. Fundamentals of Continuum Mechanics[M]. Beijing: Higher Education Press, 2003.(in Chinese))
    [29] Lu H M, Jiang Q. Surface tension and its temperature coefficient for liquid metals[J]. J Phys Chem B, 2005, 109(32):15463-15468. doi: 10.1021/jp0516341
    [30] Zhao M, Zheng W T, Li J C, Wen Z, Gu M X, Sun C Q. Atomistic origin, temperature dependence, and responsibilities of surface energetics: an extended broken-bond rule[J]. Phys Rev B, 2007,75(8):085427. doi: 10.1103/PhysRevB.75.085427
    [31] Mark J E. Polymer Data Handbook[M]. 2nd ed. New York: Oxford University Press, 2009.
    [32] 吴人洁. 高聚物的表面与界面[M]. 北京:科学出版社,1998. (WU Ren-jie. The Surface and Interface of Polymer[M]. Beijing: Science Press, 1998. (in Chinese))
  • 加载中
计量
  • 文章访问数:  1295
  • HTML全文浏览量:  58
  • PDF下载量:  843
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-26
  • 修回日期:  2011-08-15
  • 刊出日期:  2011-11-15

目录

    /

    返回文章
    返回