留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高阶空间精度格式和嵌套网格对旋翼尾迹捕捉的改进

徐丽 翁培奋

徐丽, 翁培奋. 基于高阶空间精度格式和嵌套网格对旋翼尾迹捕捉的改进[J]. 应用数学和力学, 2011, 32(12): 1461-1471. doi: 10.3879/j.issn.1000-0887.2011.12.006
引用本文: 徐丽, 翁培奋. 基于高阶空间精度格式和嵌套网格对旋翼尾迹捕捉的改进[J]. 应用数学和力学, 2011, 32(12): 1461-1471. doi: 10.3879/j.issn.1000-0887.2011.12.006
XU Li, WENG Pei-fen. Rotor Wake Capture Improvement Based on High Order Spatially Accurate Schemes and Chimera Grids[J]. Applied Mathematics and Mechanics, 2011, 32(12): 1461-1471. doi: 10.3879/j.issn.1000-0887.2011.12.006
Citation: XU Li, WENG Pei-fen. Rotor Wake Capture Improvement Based on High Order Spatially Accurate Schemes and Chimera Grids[J]. Applied Mathematics and Mechanics, 2011, 32(12): 1461-1471. doi: 10.3879/j.issn.1000-0887.2011.12.006

基于高阶空间精度格式和嵌套网格对旋翼尾迹捕捉的改进

doi: 10.3879/j.issn.1000-0887.2011.12.006
基金项目: 国家自然科学基金资助项目(10802046)
详细信息
    作者简介:

    徐丽(1977- ),女,山东平邑人,副教授,博士(联系人.Tel:+86-21-68029205;E-mail:xu-limaths@163.com).

  • 中图分类号: V211.3

Rotor Wake Capture Improvement Based on High Order Spatially Accurate Schemes and Chimera Grids

  • 摘要: 发展了一种基于高阶迎风格式和嵌套网格捕捉直升机悬停旋翼涡尾迹的方法.无粘通量采用Roe Reimann求解器,使用改进的5阶加权基本无振荡(WENO)格式对交界面左右状态进行高阶插值,并与MUSCL插值进行比较.为便于捕捉尾迹和实施周期性边界条件,计算采用结构嵌套网格,其中高质量的旋翼网格完全嵌套于背景网格中.当解达到近似收敛后在桨尖涡分布区域对背景网格进行加密,如此经过3次得到优化的背景网格.考虑到WENO格式插值的特点,提出了搜索3层洞边界和人工外边界的方法以便插值的直接进行.用该方法对一跨音速和一亚音速悬停旋翼粘性流场进行了数值计算.数值结果表明:所发展方法对涡尾迹具有很高的捕捉能力;与MUSCL格式相比,WENO格式具有较低的数值耗散.
  • [1] Egolf T. Recent rotor wake simulation and modeling studies at United Technologies Corporation[R]. AIAA paper 2000-115, 2000.
    [2] He C, Zhao J. Modeling rotor wake dynamics with viscous vortex particle method[J]. AIAA Journal, 2009, 47(4): 902-915. doi: 10.2514/1.36466
    [3] Harris R E, Sheta E F, Habchi S D. An efficient adaptive Cartesian vorticity transport solver for rotorcraft flowfield analysis[R]. AIAA paper 2010-1072, 2010.
    [4] Wagner S. On the numerical prediction of rotor wakes using linear and non-linear methods[R]. AIAA paper 2000-0111, 2000.
    [5] Dietz M, Keler M, Kramer E, Wagner S. Tip vortex conservation on a helicopter main rotor using vortex-adapted chimera grids[J]. AIAA Journal, 2007, 45(8): 2062-2074. doi: 10.2514/1.28643
    [6] Caradonna F X, Directorate A, Aviation U S, Command M. Developments and challenges in rotorcraft aerodynamics[R]. AIAA paper 2000-0109, 2000.
    [7] Hariharan N, Sankar L N. High-order essentially nonoscillatory schemes for rotary-wing wake computations[J]. Journal of Aircraft, 2004, 41(2): 258-267. doi: 10.2514/1.9320
    [8] Hariharan N. High order accurate numerical convection of vortices across overset interfaces[R]. AIAA paper 2005-1263, 2005.
    [9] Usta E, Wake B E, Egolf T A, Sankar L N. Application of a symmetric total variation diminishing scheme to aerodynamics and aeroacoustics of rotors[C]Presented at the American Helicopter Society 57th Annual Forum. Washington D C, May 9-11, 2001.
    [10] Kim H, Williams M, Lyrintzis A. Improved method for rotor wake capturing[J]. Journal of Aircraft, 2002, 39(5): 794-803. doi: 10.2514/2.3025
    [11] Borges R, Carmona M, Costa B, Don W S. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211. doi: 10.1016/j.jcp.2007.11.038
    [12] Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187
    [13] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. doi: 10.1006/jcph.1996.0130
    [14] Yoon S, Jameson A. Lower-upper symmetric Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1998, 26(9): 1025-1026.
    [15] Chen R, Wang Z. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12): 2238-2245. doi: 10.2514/2.914
    [16] Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separated turbulent flow[R]. AIAA paper 78-0257, 1978.
    [17] Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. doi: 10.1016/0021-9991(81)90128-5
    [18] Chen X, Zha G C, Yang M T. Numerical simulation of 3-D wing flutter with fully coupled fluidstructural interaction[J]. Computers and Fluids, 2007, 36(5): 856-867. doi: 10.1016/j.compfluid.2006.08.005
    [19] Harten A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3): 357-393. doi: 10.1016/0021-9991(83)90136-5
    [20] Xu L, Yang A M, Guang P, Weng P F. Numerical experiments using one high-resolution scheme for unsteady inviscid compressible flows[J]. Acta Aerodynamica Sinica, 2009, 27(5): 602-607.
    [21] Titarev V A, Toro E F. WENO schemes based on upwind and centred TVD fluxes[J]. Computers and Fluids, 2005, 34(6): 705-720. doi: 10.1016/j.compfluid.2004.05.009
    [22] Caradonna F X, Tung C. Experimental and analytical studies of a model helicopter rotor in hover[R]. NASA TM 81232, 1981.
    [23] Strawn R C, Barth T J. A finite-volume Euler solver for computing rotary-wing aerodynamics on unstructured meshes[J]. Journal of the American Helicopter Society, 1993, 38: 61-67. doi: 10.4050/JAHS.38.61
  • 加载中
计量
  • 文章访问数:  1312
  • HTML全文浏览量:  85
  • PDF下载量:  728
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-16
  • 修回日期:  2011-10-24
  • 刊出日期:  2011-12-15

目录

    /

    返回文章
    返回