[1] |
Aulbach B, Flockerzi D. The past in short hypercycles[J]. J Math Biol, 1989, 27(2): 223-231.
|
[2] |
Balmforth N J. Solitary waves and homoclinic orbits[J]. Annual Review of Fluid Mechanics, 1995, 27: 335-373.
|
[3] |
FENG Bei-ye. The heteroclinic cycle in the model of competition between n-species and its stability[J]. Acta Math Appl Sinica(English Series), 1998, 14(4): 404-413.
|
[4] |
Shi’lnikov L P. A case of the existence of a countable number of periodic motions(point mapping proof of existence theorem showing neighborhood of trajectory which departs from and returns to saddle-point focus contains denumerable set of periodic motions)[J]. Translated by Puckette S. Sov Math, 1965, 6: 163-166.
|
[5] |
Shi’lnikov L P. A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type[J]. Translated by Cezus F A. Math U S S R Shornik, 1970, 10(1): 91-102.
|
[6] |
Kennedy J, Kocak S, Yorke J A. A chaos lemma[J]. Amer Math Monthly, 2001, 108(5): 411-423.
|
[7] |
Silva C P. Shi’lnikov theorem—a tutorial[J]. IEEE Trans Circuits Syst-Ⅰ, 2003, 40(10): 675-682.
|
[8] |
Zhou T, Tang Y, Chen G. Chen’s attractor exists[J]. Int J Bifur & Chaos, 2004, 14(9): 3167-3177.
|
[9] |
Tucker W. The Lorenz attractor exists[J]. C R Acad Paris, Ser Ⅰ Math, 1999, 328(15): 1197-1202.
|
[10] |
Lu J H, Chen G, Cheng D, Celikovsky S. Bridge the gap between the Lorenz system and the Chen system[J]. Int J Bifur & Chaos, 2002, 12(12): 2917-2926.
|
[11] |
Zhou T, Chen G, Celikovsky S. Si’lnikov chaos in the generalized Lorenz canonical form of dynamical systems[J]. Nonlinear Dynamics, 2005, 39(4): 319-334.
|
[12] |
Sparrow C. The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors[M]. New York: Springer-Verlag, 1982.
|
[13] |
Cˇelikovsk S, Vanecˇěk A. Bilinear systems and chaos[J]. Kybernetika, 1994, 30(4): 403-424.
|
[14] |
ZHOU Tian-shuo, CHEN Guang-rong. Classification of chaos in 3-D autonomous quadratic systems-Ⅰ: basic framework and methods[J]. Int J Bifur Chaos, 2006, 16(9): 2459-2479.
|