留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

噪声和生存环境对捕食生态系统的影响

徐伟 戚鲁媛 高维廷

徐伟, 戚鲁媛, 高维廷. 噪声和生存环境对捕食生态系统的影响[J]. 应用数学和力学, 2013, 34(2): 162-171. doi: 10.3879/j.issn.1000-0887.2013.02.006
引用本文: 徐伟, 戚鲁媛, 高维廷. 噪声和生存环境对捕食生态系统的影响[J]. 应用数学和力学, 2013, 34(2): 162-171. doi: 10.3879/j.issn.1000-0887.2013.02.006
XU Wei, QI Lu-yuan, GAO Wei-ting. Effects of Noises and Habitat Complexity in the Prey-Predator Ecosystem[J]. Applied Mathematics and Mechanics, 2013, 34(2): 162-171. doi: 10.3879/j.issn.1000-0887.2013.02.006
Citation: XU Wei, QI Lu-yuan, GAO Wei-ting. Effects of Noises and Habitat Complexity in the Prey-Predator Ecosystem[J]. Applied Mathematics and Mechanics, 2013, 34(2): 162-171. doi: 10.3879/j.issn.1000-0887.2013.02.006

噪声和生存环境对捕食生态系统的影响

doi: 10.3879/j.issn.1000-0887.2013.02.006
基金项目: 国家自然基金资助项目(11172233; 10932009; 61171155);陕西省自然科学基金资助项目(2012JM8010)
详细信息
    作者简介:

    徐伟(1957—),男,西安人,教授,博士,博士生导师(通讯作者. E-mail: qiluyuan@gmail.com).

  • 中图分类号: O316;TU351

Effects of Noises and Habitat Complexity in the Prey-Predator Ecosystem

  • 摘要: 建立了可以描述自然生物生存环境复杂度的捕食生态系统的随机模型,并基于实验得到的系统参数研究了生存环境复杂程度和随机激励强度对两个物种的稳态概率分布,以及系统由非临界状态到临界状态的平均首次穿越时间的影响.在弱扰动假设下应用Stratonovich-Khasminskii随机平均原理分别得到了两个物种的稳态概率密度函数并采用Monte-Carlo对原系统模拟来验证理论求解的正确性.利用Pontryagin方程得到了系统由非临界状态到临界状态的平均首次穿越时间表达式.研究表明:1)生存环境越简单的生态系统越容易受到随机因素的影响;2)随机干扰强度越大生态系统越不稳定;3)系统的平均首次穿越时间随生存环境复杂度提高而变长;4)作用在食物自然生长率的随机激励对系统的平均首次穿越时间影响较大.
  • [1] Lotka A J. Elements of Physical Biology [M].Baltimore: Williams and Wilkins Press, 1925.
    [2] Volterra V.Varizaioni e fluttuazioni del numero d’individui in specie d’animani conviventi[J]. Mem Acad Lincei,1926, 2: 31-113.
    [3] LI Li, ZHEN Jin.Pattern dynamics of a spatial predator-prey model with noise[J]. Nonlinear Dyn,2012, 67(3):1737-1744.
    [4] Haynes K J, Liebhold A M, Johnson D M.Elevational gradient in the cyclicity of a forest-defoliation insect[J]. Popul Ecol,2012, 54(2):239-250.
    [5] LI Anwei.Impact of noise on pattern formation in predator-prey model[J]. Nonlinear Dyn,2011, 66(4): 689-694.
    [6] Osuyama T.Behavioural states of predators stablize predatorprey dynamics[J].Theor Ecol,2012, 5(4): 605-610.
    [7] Sieber M, Hilker F M.The hydra effect in predatorprey models[J].J Math Biol,2012, 64(1): 341-360.
    [8] Cai G Q, Lin Y K.Stochastic modeling of ecosystem with two competing species[J]. Probabilistic Eng Mech,2012, 27(1):2-7.
    [9] May R M. Stability and Complexity in Model Ecosystems [M].Princeton: Princeton University Press, 1973.
    [10] Wu Y, Zhu W Q.Stochastic analysis of a pulse-type prey-predator model[J]. Phys Rev E,2008, 77: 041911.
    [11] Cai G Q, Lin Y K.Stochastic analysis of the LotkaVolterra model for ecosystems[J]. Phys Rev E,2004, 70: 041910.
    [12] Cai G Q, Lin Y K.Stochastic analysis of predatorprey type ecosystems[J]. Ecol Complex,2007, 4(4): 242-249.
    [13] Nelson W G, Bonsdorff E.Fish predation and habitat complexity: are complexity thresholds real?[J]. J Exp Mar Biol Ecol, 1990, 141(2/3): 183-194.
    [14] Savino J F, Stein R A.Behavioral interactions between fish predators and their prey: effects of plant density[J]. Animal Behavior, 1986, 37(2): 311-321.
    [15] Johnson D W.Predation, habitat complexity and variation in density dependent mortality of temperate reef fishes[J]. Ecology, 2006, 87(5): 1179-1188.
    [16] Christensen B, Persson L.Speciesspecific antipredatory behaviours: effects on prey choice in different habitats[J]. Behav Ecol Sociobiol, 1993, 32(1): 1-9.
    [17] Weis J S, Candelmo A.Pollutants and fish predator/prey behavious: a review of laboratory and field approaches[J]. Current Zoology,2012, 58(1): 9-20.
    [18] Bairagi N, Jana D.On the stability and Hopf bifurcation of a delayinduced predator-prey system with habitat complexity[J]. Appl Math Model, 2011, 35(7): 3255-3267.
    [19] Khasminskii R Z, Klebaner F C.Long term behavior of solutions of the LotkaVolterra system under small random perturbations[J]. Ann Appl Probab, 2001, 11(3) :952-963.
    [20] Holling C S.Some characteristics of simple types of predation and parasitism[J]. Canadian Entomologist, 1959, 91(7): 385-398.
    [21] 杨万利, 王铁宁.非线性动力学理论方法及应用[M].北京: 国防工业出版社, 2007.(YANG Wan-li, WANG Tie-ning. Nonlinear Dynamics Theory and Application [M].Beijing: Defense Industry Press, 2007.(in Chinese))
    [22] Kuang Y, Freedman H I.Uniqueness of limit cycles in Gause-type models of predatorprey systems[J]. Math Biosci, 1988, 88(1): 67-84.
    [23] It K.On stochastic differential equations[J]. Memories Am Math Sco, 1951, 4: 289-302.
    [24] Lin Y K, Cai G Q. Probabilistic Structural Dynamics: Advanced Theory and Applications [M].New York: McGrawHill Press, 2004:127190; 419-465.
  • 加载中
计量
  • 文章访问数:  1727
  • HTML全文浏览量:  41
  • PDF下载量:  1562
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-17
  • 修回日期:  2013-01-31
  • 刊出日期:  2013-02-15

目录

    /

    返回文章
    返回