留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

格栅夹层梁热弯曲的等效微极热弹性分析

张锐 尚新春

张锐, 尚新春. 格栅夹层梁热弯曲的等效微极热弹性分析[J]. 应用数学和力学, 2015, 36(9): 936-944. doi: 10.3879/j.issn.1000-0887.2015.09.005
引用本文: 张锐, 尚新春. 格栅夹层梁热弯曲的等效微极热弹性分析[J]. 应用数学和力学, 2015, 36(9): 936-944. doi: 10.3879/j.issn.1000-0887.2015.09.005
ZHANG Rui, SHANG Xin-chun. Equivalent Micropolar Thermoelastic Analysis of Thermal Bending for Grid Sandwich Beams[J]. Applied Mathematics and Mechanics, 2015, 36(9): 936-944. doi: 10.3879/j.issn.1000-0887.2015.09.005
Citation: ZHANG Rui, SHANG Xin-chun. Equivalent Micropolar Thermoelastic Analysis of Thermal Bending for Grid Sandwich Beams[J]. Applied Mathematics and Mechanics, 2015, 36(9): 936-944. doi: 10.3879/j.issn.1000-0887.2015.09.005

格栅夹层梁热弯曲的等效微极热弹性分析

doi: 10.3879/j.issn.1000-0887.2015.09.005
基金项目: 国家高技术研究发展计划(863计划)(2012AA03A513)
详细信息
    作者简介:

    张锐(1985—),男,黑龙江虎林人,博士生(E-mail: zhangrui19852424@163.com);尚新春(1958—),男,山西朔州人,教授,博士,博士生导师(通讯作者. E-mail: shangxc@ustb.edu.cn).

  • 中图分类号: TB331;O343.6

Equivalent Micropolar Thermoelastic Analysis of Thermal Bending for Grid Sandwich Beams

Funds: The National Hightech R&D Program of China(863 Program)(2012AA03A513)
  • 摘要: 将格栅夹层梁热弯曲等效为微极热弹性梁的受热变形,利用平面微极热弹性理论建立了微极梁受热变形的控制方程组,给出了温度载荷下微极梁的位移表达式.通过胞元能量等效的方法,得到了研究的格栅夹层梁等效微极热弹性梁材料参数.对比了等效微极梁模型和ANSYS有限元软件计算得到的温度载荷下悬臂格栅夹层梁受热弯曲变形的数值结果,两种方法得到的结果非常接近,证明了微极热弹性梁是一种简单有效的模拟格栅夹层梁热变形的等效模型.
  • [1] Baant Z P. Micropolar medium as model for buckling of grid frameworks[C]//Developments in Mechanics, Proceedings of the 〖STBX〗12th Midwestern Mechanics Conference,1971,6: 587-594.
    [2] Bazant Z P, Christensen M. Analogy between micropolar continuum and grid framework under initial stress[J]. International Journal of Solids and Structures,1972,8: 327-346.
    [3] Kanatani K. A theory of continua with projective microstructure as a model for large truss[J]. Journal of Engineering Mathematics,1978,12(4): 341-356.
    [4] Adachi T, Tomita Y, Tanaka M. Computational simulation of deformation behavior of 2D-lattice continuum[J]. International Journal of Mechanical Sciences,1998,40(9): 857-866.
    [5] Chen J Y, Huang Y, Ortiz M. Fracture analysis of cellular materials: a strain gradient model[J]. Journal of the Mechanics and Physics of Solids,1998,46(5): 789-828.
    [6] Kumar R S, Mcdowell D L. Generalized continuum modeling of 2-D periodic cellular solids[J]. International Journal of Solids and Structures,2004,41(26): 7399-7422.
    [7] Evans A G, Hutchinson J W, Fleck N A, Ashby M F, Wadley H N G. The topological design of multifunctional cellular metals[J]. Progress in Materials Science,2001,46(3): 309-327.
    [8] Gibson L J, Ashby M F. Cellular Solids: Structure and Properties [M]. Cambridge, NY: Cambridge University Press, 1998.
    [9] Romanoff J, Varsta P. Bending response of web-core sandwich plates[J]. Composite Structures,2007,81(2): 292-302.
    [10] 蔺鹏臻, 杨子江, 孙理想, 冀伟. 集中弯矩作用下箱梁剪力滞效应的解析解[J]. 应用数学和力学,2014,35(7): 750-758.(LIN Peng-zhen, YANG Zi-jiang, SUN Li-xiang, JI Wei. Analytic method for shear lag effect of box girders under concentrated bending moments[J]. Applied Mathematics and Mechanics,2014,35(7): 750-758.(in Chinese))
    [11] 郝加琼, 李明成, 邓宗白. 基于高阶变形理论的硬夹芯夹层板横向载荷条件下的弯曲[J]. 应用数学和力学, 2014,35(8): 873-882.(HAO Jia-qiong, LI Ming-cheng, DENG Zong-bai. Bending of sandwich plates with hard cores under transverse loading based on the high-order deformation theory[J]. Applied Mathematics and Mechanics,2014,35(8): 873-882.(in Chinese))
    [12] Gibson L J, Ashby M F, Schajer G S. The mechanics of two-dimension cellular materials[J]. Proceedings of the Royal Society of London A,1982,382(1782): 25-42.
    [13] 富明慧, 尹久仁. 蜂窝芯层的等效弹性参数[J]. 力学学报, 1999,31(1): 113-118.(FU Ming-hui, YIN Jiu-ren. Equivalent elastic parameters of the honeycomb core[J]. Acta Mechanica Sinica,1999,31(1): 113-118.(in Chinese))
    [14] Kanatani K. A micropolar continuum model for vibrating grid frameworks[J]. International Journal of Engineering Science,1979,17(4): 409-418.
    [15] Eringen A C. Microcontinuum Field Theories I: Foundations and Solids [M]. New York: Springer, 1999.
    [16] Wang X L, Stronge W J. Micropolar theory for two-dimensional stresses in elastic honeycomb[J]. Proceedings of the Royal Society of London in Materials Science A,1999,455(1986): 2091-2116.
    [17] Allen H G. Analysis and Design of Structural Sandwich Panels [M]. Oxford: Perganmon Press, 1969.
    [18] Sokolinsky V, Frostig Y. Branching behavior in the nonlinear response of sandwich panels with a transversely flexible core[J]. International Journal of Solids and Structures,2000,37(40): 5745-5772.
    [19] Noor A K, Nemeth M P. Micropolar beam models for lattice grids with rigid joints[J].Computer Methods in Applied Mechanics and Engineering,1980,21(2): 249-263.
    [20] XIE Gong-nan, WANG Qi, Sunden B, ZHANG Wei-hong. Thermomechanical optimization of lightweight thermal protection system under aerodynamic heating[J]. Applied Thermal Engineering,2013,59(1/2): 425-434.
    [21] Noor A K, Anderson M S, Greene W H. Continuum models for beam- and platelike lattice structures[J]. AIAA Journal,1987,16(12) : 1219-1228.
    [22] 张锐, 尚新春. 格栅夹层梁的热弯曲变形[J]. 复合材料学报, 2014,31(6): 1558-1565.(ZHANG Rui, SHANG Xin-chun. Thermal bending deformation of grid sandwich beam[J]. Acta Materiae Composite Sinica,2014,31(6): 1558-1565.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1632
  • HTML全文浏览量:  173
  • PDF下载量:  736
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-27
  • 修回日期:  2015-05-06
  • 刊出日期:  2015-09-15

目录

    /

    返回文章
    返回