[1] |
Camassa R, Holm D D. An integrable shallow water equation with peaked solitons[J].Physical Review Letters,1993,71(11): 1661-1664.
|
[2] |
Camassa R, Holm D D, Hyman J M. A new integrable shallow water equation[J].Advances in Applied Machanics,1994,31: 1-33.
|
[3] |
QIAO Zhi-jun. The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold commun[J].Communications in Mathematical Physics,2003,239(1/2): 309-341.
|
[4] |
Fuchssteiner B, Fokas A S. Symplectic structures, their Bcklund transformations and hereditary symmetries[J].Physica D: Nonlinear Phenomena,1981,4(1): 47-66.
|
[5] |
Johnson R S. Camassa-Holm, Korteweg-de Vries and related models for water waves[J].Journal of Fluid Mechanics,2002,455: 63-82.
|
[6] |
Constantin A, Lannes D. The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[J].Archive for Rational Mechanics and Analysis,2009,192(1): 165-186.
|
[7] |
Parker A. On exact solutions of the regularized long-wave equation: a direct approach to partially integrable equations—I: solitary wave and solitons[J].Journal of Mathematical Physics,1995,36(7): 3498-3505.
|
[8] |
Schiff J. The Camassa-Holm equation: a loop group approach[J].Physica D: Nonlinear Phenomena,1998,121(1/2): 24-43.
|
[9] |
Constantin A. On the scattering problem for the Camassa-Holm equation[J].Proceedings of The Royal Society A,2001,457(2008): 953- 970.
|
[10] |
Parker A. On the Camassa-Holm equation and a direct method of solution—I: bilinear form and solitary waves[J].Proceedings of The Royal Society A,2004,460(2050): 2929-2957.
|
[11] |
Parker A. On the Camassa-Holm equation and a direct method of solution—II: soliton solutions[J].Proceedings of The Royal Society A,2005,461(2063): 3611-3632.
|
[12] |
Parker A. On the Camassa-Holm equation and a direct method of solution—III:N -soliton solutions[J].Proceedings of The Royal Society A,2005,461(2064): 3893-3911.
|
[13] |
Fan E G, Hon Y C. Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii’s breaking soliton equation in (2+1) dimensions[J].Physical Review E,2008,78(3): 036607.
|
[14] |
MA Wen-xiu, ZHOU Ru-guang, GAO Liang. Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2+1) dimensions[J].Modern Physics Letters A,2009,24(21): 1677-1688.
|
[15] |
DAI Hui-hui, LI Yi-shen, SU Ting. Multi-soliton and multi-cuspon solutions of a Camassa-Holm hierarchy and their interactions[J].Journal of Physics A: Mathematical and Theoretical,2009,42(5): 055203.
|
[16] |
DAI Hui-hui , LI Yi-shen. The interaction of the 〖WT5”BZ〗ω〖WT5”B4〗-soliton and 〖WT5”BZ〗ω〖WT5”B4〗-cuspon of the Camassa-Holm equation[J].Journal of Physics A: Mathematical and General,2005,38(42): 685-694.
|
[17] |
Parker A. Cusped solitons of the Camassa-Holm equation—I: cuspon solitary wave and antipeakon limit[J].Chaos, Solitons & Fractals,2007,34(3): 730-739.
|
[18] |
Parker A. Wave dynamics for peaked solitons of the Camassa-Holm equation[J].Chaos, Solitons & Fractals,2007,35(2): 220-237.
|
[19] |
Parker A. Cusped solitons of the Camassa-Holm equation—II: binary cuspon-soliton interactions[J].Chaos, Solitons & Fractals,2009,41(3): 1531-1549.
|
[20] |
Parker A. A factorization procedure for solving the Camassa-Holm equation[J].Inverse Problems,2006,22(2): 599-609.
|
[21] |
Parker A, Matsuno Y. The peakon limits of soliton solutions of the Camassa-Holm equation[J].Journal of the Physical Society of Japan,2006,75(12): 124001.
|
[22] |
Geronimo J S, Gesztesy F, Holden H. Algebro-Geometric solutions of the Baxter-Szeg difference equation[J].Communications in Mathematical Physics,2005,258(1): 149-177.
|
[23] |
GENG Xian-guo, CAO Ce-wen. Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions[J].Nonlinearity,2001,14(6): 1433-1452.
|
[24] |
Constantin A. Quasi-periodicity with respect to time of spatially periodic nite-gap solutions of the Camassa-Holm equation[J].Bulletin des Sciences Mathématiques,1998,122(7): 487-494.
|
[25] |
Constantin A, McKean H P. A shallow water equation on the circle [J].Communications on Pure and Applied Mathematics,1999,52(8): 949-982.
|
[26] |
Gesztesy F, Holden H. Algebro-geometry solutions of the Camassa-Holm hierarchy[J]. Revista Matemática Iberoamericana,2003,19(1): 73-142.
|
[27] |
Gesztesy F, Holden H. Real-valued algebro-geometric solutions of the Camassa-Holm bierarchy[J].Philos Trans Roy Soc A,2008,366(1867): 1025-1054.
|
[28] |
Kalla C, Klein C. New construction of algebro-geometric solutions to the Camassa-Holm equation and their numerical evaluation[J].Proceedings of The Royal Society A,2012,468(2141): 1371-1390.
|
[29] |
Bobenko A I, Klein C, eds.Computational Approach to Riemann Surfaces [M]. Lecture Notes in Mathematics, Vol2013. Beirlin: Springer, 2011.
|
[30] |
Trefethen L N.Spectral Methods in Matlab [M]. Software, Environments, Tools . Philadelphina, PA: SIAM, 2000.
|
[31] |
Nakamura A. A direct method of calculating periodic wave solitons to nonlinear evolution equations—I: exact two-periodic wave solution[J].Journal of the Physical Society of Japan,1979,47(5): 1701-1705.
|
[32] |
Frauendiener J, Klein C. Hyperelliptic theta functions and spectral methods[J].Journal of Computational and Applied Mathematics,2004,167(1): 193-218.
|
[33] |
WANG Zhen, ZOU Li, ZONG Zhi. Periodic solutions of the Camassa-Holm equation based on the bilinear form [J].Journal of Physics A Mathematical and Theoretical,2011,44(35): 355204.
|
[34] |
Hirota R.The Direct Method in Soliton Theory[M]. NagaiA, Nimmo J, Gilson C, eds. Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, 2004.
|